76 lines
2.3 KiB
Python
76 lines
2.3 KiB
Python
"""Compare the outputs of HF and distributed vLLM when using greedy sampling.
|
|
|
|
Run:
|
|
```sh
|
|
pytest test_chunked_prefill_distributed.py
|
|
```
|
|
"""
|
|
|
|
import os
|
|
|
|
import pytest
|
|
|
|
from vllm.utils import cuda_device_count_stateless
|
|
|
|
from ..models.utils import check_outputs_equal
|
|
from ..utils import fork_new_process_for_each_test
|
|
|
|
|
|
@pytest.mark.skipif(cuda_device_count_stateless() < 2,
|
|
reason="Need at least 2 GPUs to run the test.")
|
|
@pytest.mark.parametrize("model, distributed_executor_backend", [
|
|
("facebook/opt-125m", "ray"),
|
|
("meta-llama/Llama-2-7b-hf", "ray"),
|
|
("facebook/opt-125m", "mp"),
|
|
("meta-llama/Llama-2-7b-hf", "mp"),
|
|
])
|
|
@fork_new_process_for_each_test
|
|
def test_models(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
distributed_executor_backend: str,
|
|
) -> None:
|
|
if model == "meta-llama/Llama-2-7b-hf" and distributed_executor_backend == "ray": # noqa
|
|
assert distributed_executor_backend == "ray"
|
|
# test ray adag
|
|
os.environ['VLLM_USE_RAY_SPMD_WORKER'] = "1"
|
|
os.environ['VLLM_USE_RAY_COMPILED_DAG'] = "1"
|
|
|
|
dtype = "half"
|
|
max_tokens = 5
|
|
chunked_prefill_token_size = 16
|
|
|
|
# Add a chunked prefill config.
|
|
max_num_seqs = min(chunked_prefill_token_size, 256)
|
|
assert chunked_prefill_token_size != -1
|
|
enable_chunked_prefill = True
|
|
max_num_batched_tokens = chunked_prefill_token_size
|
|
|
|
# NOTE: take care of the order. run vLLM first, and then run HF.
|
|
# vLLM needs a fresh new process without cuda initialization.
|
|
# if we run HF first, the cuda initialization will be done and it
|
|
# will hurt multiprocessing backend with fork method (the default method).
|
|
|
|
with vllm_runner(
|
|
model,
|
|
dtype=dtype,
|
|
tensor_parallel_size=2,
|
|
max_num_seqs=max_num_seqs,
|
|
enable_chunked_prefill=enable_chunked_prefill,
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
distributed_executor_backend=distributed_executor_backend,
|
|
) as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
with hf_runner(model, dtype=dtype) as hf_model:
|
|
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
check_outputs_equal(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|