vllm/tests/distributed/test_basic_distributed_correctness.py

81 lines
2.6 KiB
Python

"""Compare the outputs of HF and distributed vLLM when using greedy sampling.
Run:
```sh
cd $VLLM_PATH/tests
pytest distributed/test_basic_distributed_correctness.py
```
"""
import os
import pytest
from vllm.utils import cuda_device_count_stateless
from ..models.utils import check_outputs_equal
from ..utils import fork_new_process_for_each_test
TARGET_TEST_SUITE = os.environ.get("TARGET_TEST_SUITE", "L4")
@pytest.mark.skipif(cuda_device_count_stateless() < 2,
reason="Need at least 2 GPUs to run the test.")
@pytest.mark.parametrize(
"model, distributed_executor_backend, attention_backend, "
"test_suite", [
("facebook/opt-125m", "ray", "", "L4"),
("facebook/opt-125m", "mp", "", "L4"),
("meta-llama/Llama-2-7b-hf", "ray", "", "L4"),
("meta-llama/Llama-2-7b-hf", "mp", "", "L4"),
("facebook/opt-125m", "ray", "", "A100"),
("facebook/opt-125m", "mp", "", "A100"),
("facebook/opt-125m", "mp", "FLASHINFER", "A100"),
("meta-llama/Meta-Llama-3-8B", "ray", "FLASHINFER", "A100"),
])
@fork_new_process_for_each_test
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
distributed_executor_backend: str,
attention_backend: str,
test_suite: str,
) -> None:
if test_suite != TARGET_TEST_SUITE:
pytest.skip(f"Skip test for {test_suite}")
if model == "meta-llama/Llama-2-7b-hf" and distributed_executor_backend == "ray" and attention_backend == "" and test_suite == "L4": # noqa
# test ray adag
os.environ['VLLM_USE_RAY_SPMD_WORKER'] = "1"
os.environ['VLLM_USE_RAY_COMPILED_DAG'] = "1"
if attention_backend:
os.environ["VLLM_ATTENTION_BACKEND"] = attention_backend
dtype = "half"
max_tokens = 5
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
with vllm_runner(model,
dtype=dtype,
tensor_parallel_size=2,
distributed_executor_backend=distributed_executor_backend
) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
check_outputs_equal(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)