vllm/vllm/engine/protocol.py
2024-10-28 06:59:37 +00:00

233 lines
7.4 KiB
Python

import asyncio
from abc import ABC, abstractmethod
from typing import AsyncGenerator, List, Mapping, Optional, Union
from vllm.beam_search import BeamSearchSequence, create_sort_beams_key_function
from vllm.config import DecodingConfig, ModelConfig
from vllm.core.scheduler import SchedulerOutputs
from vllm.inputs.data import PromptType, TokensPrompt
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.outputs import (CompletionOutput, EmbeddingRequestOutput,
RequestOutput)
from vllm.pooling_params import PoolingParams
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sampling_params import BeamSearchParams, SamplingParams
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.utils import collect_from_async_generator, random_uuid
logger = init_logger(__name__)
class EngineClient(ABC):
"""Protocol class for Clients to Engine"""
@property
@abstractmethod
def is_running(self) -> bool:
...
@property
@abstractmethod
def is_stopped(self) -> bool:
...
@property
@abstractmethod
def errored(self) -> bool:
...
@property
@abstractmethod
def dead_error(self) -> BaseException:
...
@abstractmethod
def generate(
self,
prompt: PromptType,
sampling_params: SamplingParams,
request_id: str,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> AsyncGenerator[RequestOutput, None]:
"""Generate outputs for a request."""
...
async def beam_search(
self,
prompt: Union[str, List[int]],
request_id: str,
params: BeamSearchParams,
) -> AsyncGenerator[RequestOutput, None]:
beam_width = params.beam_width
max_tokens = params.max_tokens
ignore_eos = params.ignore_eos
temperature = params.temperature
length_penalty = params.length_penalty
tokenizer = await self.get_tokenizer(lora_request=None)
if isinstance(prompt, str):
tokenized_prompt = tokenizer.encode(prompt)
prompt_text = prompt
else:
tokenized_prompt = prompt
prompt_text = None
tokenized_length = len(tokenized_prompt)
sort_beams_key = create_sort_beams_key_function(
tokenizer.eos_token_id, length_penalty)
beam_search_params = SamplingParams(logprobs=2 * beam_width,
max_tokens=1,
temperature=temperature)
all_beams = [
BeamSearchSequence(tokens=tokenized_prompt,
logprobs=[],
cum_logprob=0)
]
completed = []
for _ in range(max_tokens):
prompts_batch = [
TokensPrompt(prompt_token_ids=beam.tokens)
for beam in all_beams
]
tasks = []
request_id = f"beam_search-{random_uuid()}"
for i, individual_prompt in enumerate(prompts_batch):
request_id_item = f"{request_id}-{i}"
task = asyncio.create_task(
collect_from_async_generator(
self.generate(individual_prompt, beam_search_params,
request_id_item)))
tasks.append(task)
output = await asyncio.gather(*tasks)
output = [x[0] for x in output]
new_beams = []
for i, current_beam in enumerate(all_beams):
result = output[i]
if result.outputs[0].logprobs is not None:
logprobs = result.outputs[0].logprobs[0]
for token_id, logprob_obj in logprobs.items():
new_beam = BeamSearchSequence(
tokens=current_beam.tokens + [token_id],
logprobs=current_beam.logprobs + [logprobs],
cum_logprob=current_beam.cum_logprob +
logprob_obj.logprob)
if token_id == tokenizer.eos_token_id and \
not ignore_eos:
completed.append(new_beam)
else:
new_beams.append(new_beam)
sorted_beams = sorted(new_beams, key=sort_beams_key, reverse=True)
all_beams = sorted_beams[:beam_width]
completed.extend(all_beams)
sorted_completed = sorted(completed, key=sort_beams_key, reverse=True)
best_beams = sorted_completed[:beam_width]
for beam in best_beams:
if (beam.tokens[-1] == tokenizer.eos_token_id and not ignore_eos):
# Skip the eos token in the text.
tokens = beam.tokens[tokenized_length:-1]
else:
tokens = beam.tokens[tokenized_length:]
beam.text = tokenizer.decode(tokens)
beam_search_output = RequestOutput(
request_id=request_id,
prompt=prompt_text,
outputs=[
CompletionOutput(
text=beam.text,
cumulative_logprob=beam.cum_logprob,
token_ids=beam.tokens[tokenized_length:],
index=i,
logprobs=beam.logprobs,
) for (i, beam) in enumerate(best_beams)
],
finished=True,
prompt_token_ids=tokenized_prompt,
prompt_logprobs=None)
yield beam_search_output
@abstractmethod
def encode(
self,
prompt: PromptType,
pooling_params: PoolingParams,
request_id: str,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
priority: int = 0,
) -> AsyncGenerator[EmbeddingRequestOutput, None]:
"""Generate outputs for a request from an embedding model."""
...
@abstractmethod
async def abort(self, request_id: str) -> None:
"""Abort a request.
Args:
request_id: The unique id of the request.
"""
@abstractmethod
async def get_model_config(self) -> ModelConfig:
"""Get the model configuration of the vLLM engine."""
...
@abstractmethod
async def get_decoding_config(self) -> DecodingConfig:
...
"""Get the decoding configuration of the vLLM engine."""
@abstractmethod
async def get_tokenizer(
self,
lora_request: Optional[LoRARequest] = None,
) -> AnyTokenizer:
"""Get the appropriate tokenizer for the request"""
...
@abstractmethod
async def is_tracing_enabled(self) -> bool:
...
@abstractmethod
async def do_log_stats(
self,
scheduler_outputs: Optional[SchedulerOutputs] = None,
model_output: Optional[List[SamplerOutput]] = None,
) -> None:
...
@abstractmethod
async def check_health(self) -> None:
"""Raise if unhealthy"""
...
@abstractmethod
async def start_profile(self) -> None:
"""Start profiling the engine"""
...
@abstractmethod
async def stop_profile(self) -> None:
"""Start profiling the engine"""
...