vllm/vllm/v1/engine/processor.py
Alexander Matveev fdea8ec167
[V1] VLM - enable processor cache by default (#11305)
Signed-off-by: Alexander Matveev <alexm@neuralmagic.com>
2024-12-18 18:54:46 -05:00

197 lines
7.8 KiB
Python

import time
from typing import Any, Dict, Mapping, Optional, Tuple, Union
from vllm.config import CacheConfig, LoRAConfig, ModelConfig
from vllm.inputs import (INPUT_REGISTRY, InputRegistry, ProcessorInputs,
PromptType, SingletonInputsAdapter)
from vllm.inputs.parse import is_encoder_decoder_inputs
from vllm.inputs.preprocess import InputPreprocessor
from vllm.lora.request import LoRARequest
from vllm.multimodal import (MULTIMODAL_REGISTRY, MultiModalKwargs,
MultiModalRegistry)
from vllm.pooling_params import PoolingParams
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.config import try_get_generation_config
from vllm.transformers_utils.tokenizer_group import BaseTokenizerGroup
from vllm.v1.engine import DetokenizerRequest, EngineCoreRequest
from vllm.v1.engine.mm_input_mapper import MMHasher, MMInputMapperClient
class Processor:
def __init__(
self,
model_config: ModelConfig,
cache_config: CacheConfig,
lora_config: Optional[LoRAConfig],
tokenizer: BaseTokenizerGroup,
input_registry: InputRegistry = INPUT_REGISTRY,
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
):
self.model_config = model_config
self.lora_config = lora_config
self.tokenizer = tokenizer
self.generation_config_fields = _load_generation_config_dict(
model_config)
self.input_preprocessor = InputPreprocessor(model_config,
self.tokenizer,
mm_registry)
self.input_processor = input_registry.create_input_processor(
model_config)
# Multi-modal (huggingface) input mapper
self.mm_input_mapper_client = MMInputMapperClient(model_config)
# Multi-modal hasher (for images)
self.use_hash = (not model_config.disable_mm_preprocessor_cache) or \
cache_config.enable_prefix_caching
self.mm_hasher = MMHasher()
# TODO: run in an ThreadpoolExecutor or BackgroundProcess.
# This ideally should releases the GIL, so we should not block the
# asyncio loop while this is running.
def process_inputs(
self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> Tuple[DetokenizerRequest, EngineCoreRequest]:
# TODO(woosuk): Support pooling models.
# TODO(woosuk): Check max_logprobs
# TODO(woosuk): Support encoder-decoder models.
if lora_request is not None and not self.lora_config:
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
"not enabled!")
if arrival_time is None:
arrival_time = time.time()
assert priority == 0, "vLLM V1 does not support priority at the moment."
assert trace_headers is None, "vLLM V1 does not support tracing yet."
# Compute MM hashes (if enabled)
mm_hashes = None
if self.use_hash:
mm_hashes = self.mm_hasher.hash_prompt(prompt)
# Process inputs.
preprocessed_inputs = self.input_preprocessor.preprocess(
prompt,
request_id=request_id,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request,
)
processed_inputs = self.input_processor(preprocessed_inputs)
self._validate_model_inputs(processed_inputs)
eos_token_id = self.input_preprocessor.get_eos_token_id(lora_request)
if is_encoder_decoder_inputs(processed_inputs):
decoder_inputs = SingletonInputsAdapter(
processed_inputs["decoder"])
encoder_inputs = SingletonInputsAdapter(
processed_inputs["encoder"])
else:
decoder_inputs = SingletonInputsAdapter(processed_inputs)
encoder_inputs = None
# TODO: Impl encoder-decoder
if encoder_inputs is not None:
raise NotImplementedError
assert isinstance(params, SamplingParams)
# TODO: can we avoid cloning here in multiproc case
sampling_params = params.clone()
sampling_params.update_from_generation_config(
self.generation_config_fields, eos_token_id)
# For merged preprocessor, mm_data is already mm_inputs
precomputed_mm_inputs = None
if isinstance(decoder_inputs.multi_modal_data, MultiModalKwargs):
precomputed_mm_inputs = [decoder_inputs.multi_modal_data]
# Apply MM mapper
mm_inputs = None
if len(decoder_inputs.multi_modal_data) > 0:
mm_inputs = self.mm_input_mapper_client.process_inputs(
decoder_inputs.multi_modal_data, mm_hashes,
decoder_inputs.mm_processor_kwargs, precomputed_mm_inputs)
# Make Request for Detokenizer.
detokenizer_request = DetokenizerRequest(
request_id,
decoder_inputs.prompt,
decoder_inputs.prompt_token_ids,
sampling_params.skip_special_tokens,
sampling_params.spaces_between_special_tokens,
sampling_params.output_kind,
sampling_params.stop,
sampling_params.include_stop_str_in_output,
)
# Make Request for EngineCore.
engine_core_request = EngineCoreRequest(
request_id,
decoder_inputs.prompt,
decoder_inputs.prompt_token_ids,
mm_inputs,
mm_hashes,
decoder_inputs.multi_modal_placeholders,
sampling_params,
eos_token_id,
arrival_time,
lora_request,
)
return detokenizer_request, engine_core_request
def _validate_model_inputs(self, inputs: ProcessorInputs):
if is_encoder_decoder_inputs(inputs):
# For encoder-decoder multimodal models, the max_prompt_len
# restricts the decoder prompt length
prompt_inputs = inputs["decoder" if self.model_config.
is_multimodal_model else "encoder"]
else:
prompt_inputs = inputs
prompt_ids = SingletonInputsAdapter(prompt_inputs).prompt_token_ids
if prompt_ids is None or len(prompt_ids) == 0:
raise ValueError("Prompt cannot be empty")
if self.model_config.is_multimodal_model:
max_prompt_len = self.model_config.max_model_len
if len(prompt_ids) > max_prompt_len:
raise ValueError(
f"The prompt (total length {len(prompt_ids)}) is too long "
f"to fit into the model (context length {max_prompt_len}). "
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens plus multimodal tokens. For image "
"inputs, the number of image tokens depends on the number "
"of images, and possibly their aspect ratios as well.")
# TODO: Find out how many placeholder tokens are there so we can
# check that chunked prefill does not truncate them
# max_batch_len = self.scheduler_config.max_num_batched_tokens
def _load_generation_config_dict(model_config: ModelConfig) -> Dict[str, Any]:
config = try_get_generation_config(
model_config.model,
trust_remote_code=model_config.trust_remote_code,
revision=model_config.revision,
)
if config is None:
return {}
return config.to_diff_dict()