
Co-authored-by: Andrew Feldman <afeld2012@gmail.com> Co-authored-by: Nick Hill <nickhill@us.ibm.com>
149 lines
5.5 KiB
Python
149 lines
5.5 KiB
Python
import warnings
|
|
from enum import Enum
|
|
from typing import Dict, List, Optional, Sequence, Tuple, Union
|
|
|
|
from vllm.sequence import SampleLogprobs
|
|
|
|
TokensText = Tuple[List[int], str]
|
|
|
|
|
|
def check_outputs_equal(
|
|
*,
|
|
outputs_0_lst: Sequence[TokensText],
|
|
outputs_1_lst: Sequence[TokensText],
|
|
name_0: str,
|
|
name_1: str,
|
|
):
|
|
"""
|
|
Compare the two sequences generated by different models,
|
|
which should be equal.
|
|
"""
|
|
assert len(outputs_0_lst) == len(outputs_1_lst)
|
|
|
|
for prompt_idx, (outputs_0,
|
|
outputs_1) in enumerate(zip(outputs_0_lst,
|
|
outputs_1_lst)):
|
|
output_ids_0, output_str_0 = outputs_0
|
|
output_ids_1, output_str_1 = outputs_1
|
|
|
|
# The text and token outputs should exactly match
|
|
fail_msg = (f"Test{prompt_idx}:"
|
|
f"\n{name_0}:\t{output_str_0!r}"
|
|
f"\n{name_1}:\t{output_str_1!r}")
|
|
|
|
assert output_str_0 == output_str_1, fail_msg
|
|
assert output_ids_0 == output_ids_1, fail_msg
|
|
|
|
|
|
TokensTextLogprobs = Tuple[List[int], str, Optional[Union[List[Dict[int,
|
|
float]],
|
|
SampleLogprobs]]]
|
|
|
|
|
|
def check_logprobs_close(
|
|
*,
|
|
outputs_0_lst: Sequence[TokensTextLogprobs],
|
|
outputs_1_lst: Sequence[TokensTextLogprobs],
|
|
name_0: str,
|
|
name_1: str,
|
|
num_outputs_0_skip_tokens: int = 0,
|
|
warn_on_mismatch: bool = True,
|
|
):
|
|
"""
|
|
Compare the logprobs of two sequences generated by different models,
|
|
which should be similar but not necessarily equal.
|
|
|
|
Arguments:
|
|
|
|
* outputs_0_lst: First sequence to compare
|
|
* outputs_0_lst: Second sequence to compare
|
|
* name_0: sequence #0 name
|
|
* name_1: sequence #1 name
|
|
* num_outputs_0_skip_tokens: If > 0, specifies the number of initial
|
|
sequence #0 tokens & logprobs to discard
|
|
before comparison, i.e. all
|
|
of sequence #1 will be compared to
|
|
sequence #0 beginning at index
|
|
num_outputs_0_skip_tokens
|
|
* warn_on_mismatch: Issue a warning if there is token-wise or text-wise
|
|
mismatch between the two sequences
|
|
"""
|
|
assert len(outputs_0_lst) == len(outputs_1_lst)
|
|
|
|
# Loop through responses to each prompt.
|
|
for prompt_idx, (outputs_0,
|
|
outputs_1) in enumerate(zip(outputs_0_lst,
|
|
outputs_1_lst)):
|
|
output_ids_0, output_str_0, logprobs_0 = outputs_0
|
|
output_ids_1, output_str_1, logprobs_1 = outputs_1
|
|
|
|
if logprobs_0 is None:
|
|
logprobs_0 = [None] * len(output_ids_0)
|
|
if logprobs_1 is None:
|
|
logprobs_1 = [None] * len(output_ids_1)
|
|
|
|
# Skip specified number of initial sequence #0 tokens
|
|
# & logprobs, leaving output text as-is for simplicity
|
|
# (text mismatches may generate warnings but do not
|
|
# cause the test to fail.)
|
|
if num_outputs_0_skip_tokens < 0:
|
|
raise ValueError("num_outputs_0_skip_tokens must be non-negative")
|
|
output_ids_0 = output_ids_0[num_outputs_0_skip_tokens:]
|
|
logprobs_0 = logprobs_0[num_outputs_0_skip_tokens:]
|
|
|
|
# Loop through generated tokens.
|
|
for idx, (output_id_0,
|
|
output_id_1) in enumerate(zip(output_ids_0, output_ids_1)):
|
|
|
|
# If generated tokens don't match, then
|
|
if output_id_0 != output_id_1:
|
|
logprobs_elem_0 = logprobs_0[idx]
|
|
logprobs_elem_1 = logprobs_1[idx]
|
|
|
|
# Each predicted token must be in top N logprobs of the other
|
|
fail_msg = (
|
|
f"Test{prompt_idx}:"
|
|
f"\nMatched tokens:\t{output_ids_0[:idx]}"
|
|
f"\n{name_0}:\t{output_str_0!r}\t{logprobs_elem_0}"
|
|
f"\n{name_1}:\t{output_str_1!r}\t{logprobs_elem_1}")
|
|
|
|
assert logprobs_elem_0 is not None, fail_msg
|
|
assert logprobs_elem_1 is not None, fail_msg
|
|
assert output_id_0 in logprobs_elem_1, fail_msg
|
|
assert output_id_1 in logprobs_elem_0, fail_msg
|
|
|
|
if warn_on_mismatch:
|
|
with warnings.catch_warnings():
|
|
# This ensures that repeated warnings are shown
|
|
# in the output, not just the first occurrence
|
|
warnings.simplefilter("always")
|
|
|
|
warnings.warn(fail_msg, stacklevel=2)
|
|
|
|
# Break out since sequences will now diverge.
|
|
break
|
|
else:
|
|
if output_str_0 != output_str_1 and warn_on_mismatch:
|
|
# The token outputs exactly match,
|
|
# so the text outputs should exactly match as well
|
|
fail_msg = (f"Test{prompt_idx}:"
|
|
f"\n{name_0}:\t{output_str_0!r}"
|
|
f"\n{name_1}:\t{output_str_1!r}")
|
|
|
|
with warnings.catch_warnings():
|
|
# This ensures that repeated warnings are shown
|
|
# in the output, not just the first occurrence
|
|
warnings.simplefilter("always")
|
|
|
|
warnings.warn(fail_msg, stacklevel=2)
|
|
|
|
|
|
class DecoderPromptType(Enum):
|
|
'''
|
|
For encoder/decoder models only -
|
|
|
|
'''
|
|
CUSTOM = 1
|
|
NONE = 2
|
|
EMPTY_STR = 3
|