vllm/tests/metrics/test_metrics.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

429 lines
15 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import time
from typing import List
import pytest
import ray
from prometheus_client import REGISTRY
from vllm import EngineArgs, LLMEngine
from vllm.distributed import cleanup_dist_env_and_memory
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.engine.metrics import RayPrometheusStatLogger
from vllm.sampling_params import SamplingParams
MODELS = [
"facebook/opt-125m",
]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [128])
def test_metric_counter_prompt_tokens(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
with vllm_runner(model,
dtype=dtype,
disable_log_stats=False,
gpu_memory_utilization=0.4) as vllm_model:
tokenizer = vllm_model.model.get_tokenizer()
prompt_token_counts = [
len(tokenizer.encode(p)) for p in example_prompts
]
# This test needs at least 2 prompts in a batch of different lengths to
# verify their token count is correct despite padding.
assert len(example_prompts) > 1, "at least 2 prompts are required"
assert prompt_token_counts[0] != prompt_token_counts[1], (
"prompts of different lengths are required")
vllm_prompt_token_count = sum(prompt_token_counts)
_ = vllm_model.generate_greedy(example_prompts, max_tokens)
stat_logger = vllm_model.model.llm_engine.stat_loggers['prometheus']
metric_count = stat_logger.metrics.counter_prompt_tokens.labels(
**stat_logger.labels)._value.get()
assert vllm_prompt_token_count == metric_count, (
f"prompt token count: {vllm_prompt_token_count!r}\n"
f"metric: {metric_count!r}")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [128])
def test_metric_counter_generation_tokens(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
with vllm_runner(model,
dtype=dtype,
disable_log_stats=False,
gpu_memory_utilization=0.4) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
tokenizer = vllm_model.model.get_tokenizer()
stat_logger = vllm_model.model.llm_engine.stat_loggers['prometheus']
metric_count = stat_logger.metrics.counter_generation_tokens.labels(
**stat_logger.labels)._value.get()
vllm_generation_count = 0
for i in range(len(example_prompts)):
vllm_output_ids, vllm_output_str = vllm_outputs[i]
prompt_ids = tokenizer.encode(example_prompts[i])
# vllm_output_ids contains both prompt tokens and generation tokens.
# We're interested only in the count of the generation tokens.
vllm_generation_count += len(vllm_output_ids) - len(prompt_ids)
assert vllm_generation_count == metric_count, (
f"generation token count: {vllm_generation_count!r}\n"
f"metric: {metric_count!r}")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("max_tokens", [128, 129])
@pytest.mark.parametrize("disable_async_output_proc", [True, False])
def test_metric_counter_generation_tokens_multi_step(
vllm_runner,
example_prompts,
model: str,
max_tokens: int,
disable_async_output_proc: bool,
) -> None:
num_scheduler_steps = 8
with vllm_runner(
model,
disable_log_stats=False,
gpu_memory_utilization=0.4,
num_scheduler_steps=num_scheduler_steps,
disable_async_output_proc=disable_async_output_proc,
) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
tokenizer = vllm_model.model.get_tokenizer()
stat_logger = vllm_model.model.llm_engine.stat_loggers['prometheus']
metric_count = stat_logger.metrics.counter_generation_tokens.labels(
**stat_logger.labels)._value.get()
vllm_generation_count = 0
for i in range(len(example_prompts)):
vllm_output_ids, vllm_output_str = vllm_outputs[i]
prompt_ids = tokenizer.encode(example_prompts[i])
# vllm_output_ids contains both prompt tokens and generation tokens.
# We're interested only in the count of the generation tokens.
vllm_generation_count += len(vllm_output_ids) - len(prompt_ids)
# The multi-step scheduling will continue to execute forward even when
# encountering EOS, leading to slightly imprecise metrics.
assert abs(vllm_generation_count - metric_count) <\
len(example_prompts) * num_scheduler_steps, \
(f"generation token count: {vllm_generation_count!r}\n"
f"metric: {metric_count!r}")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize(
"served_model_name",
[None, [], ["ModelName0"], ["ModelName0", "ModelName1", "ModelName2"]])
def test_metric_set_tag_model_name(vllm_runner, model: str, dtype: str,
served_model_name: List[str]) -> None:
with vllm_runner(model,
dtype=dtype,
disable_log_stats=False,
gpu_memory_utilization=0.3,
served_model_name=served_model_name) as vllm_model:
stat_logger = vllm_model.model.llm_engine.stat_loggers['prometheus']
metrics_tag_content = stat_logger.labels["model_name"]
if served_model_name is None or served_model_name == []:
assert metrics_tag_content == model, (
f"Metrics tag model_name is wrong! expect: {model!r}\n"
f"actual: {metrics_tag_content!r}")
else:
assert metrics_tag_content == served_model_name[0], (
f"Metrics tag model_name is wrong! expect: "
f"{served_model_name[0]!r}\n"
f"actual: {metrics_tag_content!r}")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [4])
@pytest.mark.parametrize("disable_log_stats", [True, False])
@pytest.mark.asyncio
async def test_async_engine_log_metrics_regression(
example_prompts,
model: str,
dtype: str,
max_tokens: int,
disable_log_stats: bool,
) -> None:
"""
Regression test ensuring async engine generates metrics
when disable_log_stats=False
(see: https://github.com/vllm-project/vllm/pull/4150#pullrequestreview-2008176678)
"""
engine_args = AsyncEngineArgs(model=model,
dtype=dtype,
disable_log_stats=disable_log_stats)
async_engine = AsyncLLMEngine.from_engine_args(engine_args)
for i, prompt in enumerate(example_prompts):
results = async_engine.generate(
prompt,
SamplingParams(max_tokens=max_tokens),
f"request-id-{i}",
)
# Exhaust the async iterator to make the async engine work
async for _ in results:
pass
assert_metrics(async_engine.engine, disable_log_stats,
len(example_prompts))
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [4])
@pytest.mark.parametrize("disable_log_stats", [True, False])
def test_engine_log_metrics_regression(
example_prompts,
model: str,
dtype: str,
max_tokens: int,
disable_log_stats: bool,
) -> None:
engine_args = EngineArgs(model=model,
dtype=dtype,
disable_log_stats=disable_log_stats)
engine = LLMEngine.from_engine_args(engine_args)
for i, prompt in enumerate(example_prompts):
engine.add_request(
f"request-id-{i}",
prompt,
SamplingParams(max_tokens=max_tokens),
)
while engine.has_unfinished_requests():
engine.step()
assert_metrics(engine, disable_log_stats, len(example_prompts))
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [10])
def test_metric_spec_decode(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
k = 5
with vllm_runner(
model,
dtype=dtype,
disable_log_stats=False,
gpu_memory_utilization=0.4,
speculative_model=model,
num_speculative_tokens=k,
) as vllm_model:
# Force log interval to be 0 to catch all metrics.
stat_logger = vllm_model.model.llm_engine.stat_loggers['prometheus']
stat_logger.local_interval = 0
# Note that the purpose of this test is to verify spec decode
# metrics instead of functional correctness, so the expected values
# are intended to be loose.
metric_name_to_expected_fn = {
"gauge_spec_decode_draft_acceptance_rate": lambda v: 0 <= v <= 1,
"gauge_spec_decode_efficiency": lambda v: 0 <= v <= 1,
"counter_spec_decode_num_accepted_tokens": lambda v: 0 <= v <= k,
"counter_spec_decode_num_draft_tokens": lambda v: v == k,
"counter_spec_decode_num_emitted_tokens":
lambda v: 0 <= v <= k + 1,
}
# Use one request to better inspect the metrics.
prompts = example_prompts[:1]
_ = vllm_model.generate_greedy(prompts, max_tokens)
for metric_name, is_expected in metric_name_to_expected_fn.items():
metric_val = getattr(
stat_logger.metrics,
metric_name).labels(**stat_logger.labels)._value.get()
assert is_expected(metric_val), (
f"the value of metric {metric_name} ({metric_val}) "
"does not meet expectation")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [10])
@pytest.mark.parametrize("log_interval", [1, 3, 5, 7])
def test_metric_spec_decode_interval(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
log_interval: int,
) -> None:
k = 5
engine_args = EngineArgs(model=model,
dtype=dtype,
disable_log_stats=False,
gpu_memory_utilization=0.4,
speculative_model=model,
num_speculative_tokens=k,
enforce_eager=True)
engine = LLMEngine.from_engine_args(engine_args)
try:
engine.add_request(
"request-id-0",
example_prompts[0],
SamplingParams(max_tokens=max_tokens),
)
# set log internal
stat_logger = engine.stat_loggers['prometheus']
stat_logger.local_interval = log_interval
# prefill
engine.step()
# wait for 5 seconds to ensure that spec decode metrics
# get triggered in first decode step
time.sleep(5)
# first decode step should trigger async collection of metrics
engine.step()
# wait one second to allow H2D transfer to finish
time.sleep(1)
# second decode step should now be able to collect the spec
# decode stats and the request should also be finished
engine.step()
# must have finisehd now
assert not engine.has_unfinished_requests()
# wait to ensure logging occurs
time.sleep(log_interval)
# force logging
engine.step()
# Note that the purpose of this test is to verify spec decode
# metrics instead of functional correctness, so the expected values
# are intended to be loose.
metric_name_to_expected_fn = {
"gauge_spec_decode_draft_acceptance_rate": lambda v: 0 <= v <= 1,
"gauge_spec_decode_efficiency": lambda v: 0 <= v <= 1,
"counter_spec_decode_num_accepted_tokens": lambda v: 0 <= v <= k,
"counter_spec_decode_num_draft_tokens": lambda v: v == k,
"counter_spec_decode_num_emitted_tokens":
lambda v: 0 <= v <= k + 1,
}
for metric_name, is_expected in metric_name_to_expected_fn.items():
metric_val = getattr(
stat_logger.metrics,
metric_name).labels(**stat_logger.labels)._value.get()
assert is_expected(metric_val), (
f"the value of metric {metric_name} ({metric_val}) "
"does not meet expectation")
finally:
del engine
cleanup_dist_env_and_memory()
def assert_metrics(engine: LLMEngine, disable_log_stats: bool,
num_requests: int) -> None:
if disable_log_stats:
with pytest.raises(AttributeError):
_ = engine.stat_loggers
else:
assert (engine.stat_loggers
is not None), "engine.stat_loggers should be set"
# Ensure the count bucket of request-level histogram metrics matches
# the number of requests as a simple sanity check to ensure metrics are
# generated
labels = {'model_name': engine.model_config.model}
request_histogram_metrics = [
"vllm:e2e_request_latency_seconds",
"vllm:request_prompt_tokens",
"vllm:request_generation_tokens",
"vllm:request_params_n",
"vllm:request_params_max_tokens",
]
for metric_name in request_histogram_metrics:
metric_value = REGISTRY.get_sample_value(f"{metric_name}_count",
labels)
assert (
metric_value == num_requests), "Metrics should be collected"
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [16])
def test_engine_log_metrics_ray(
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
# This test is quite weak - it only checks that we can use
# RayPrometheusStatLogger without exceptions.
# Checking whether the metrics are actually emitted is unfortunately
# non-trivial.
# We have to run in a Ray task for Ray metrics to be emitted correctly
@ray.remote(num_gpus=1)
def _inner():
class _RayPrometheusStatLogger(RayPrometheusStatLogger):
def __init__(self, *args, **kwargs):
self._i = 0
super().__init__(*args, **kwargs)
def log(self, *args, **kwargs):
self._i += 1
return super().log(*args, **kwargs)
engine_args = EngineArgs(
model=model,
dtype=dtype,
disable_log_stats=False,
)
engine = LLMEngine.from_engine_args(engine_args)
logger = _RayPrometheusStatLogger(
local_interval=0.5,
labels=dict(model_name=engine.model_config.served_model_name),
vllm_config=engine.vllm_config)
engine.add_logger("ray", logger)
for i, prompt in enumerate(example_prompts):
engine.add_request(
f"request-id-{i}",
prompt,
SamplingParams(max_tokens=max_tokens),
)
while engine.has_unfinished_requests():
engine.step()
assert logger._i > 0, ".log must be called at least once"
ray.get(_inner.remote())