
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
217 lines
7.3 KiB
Python
217 lines
7.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import random
|
|
import time
|
|
from typing import List, Optional
|
|
|
|
import torch
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
|
|
create_kv_caches_with_random)
|
|
|
|
NUM_BLOCKS = 1024
|
|
PARTITION_SIZE = 512
|
|
|
|
|
|
@torch.inference_mode()
|
|
def main(
|
|
version: str,
|
|
num_seqs: int,
|
|
seq_len: int,
|
|
num_query_heads: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
use_alibi: bool,
|
|
block_size: int,
|
|
dtype: torch.dtype,
|
|
seed: int,
|
|
do_profile: bool,
|
|
device: str = "cuda",
|
|
kv_cache_dtype: Optional[str] = None,
|
|
) -> None:
|
|
current_platform.seed_everything(seed)
|
|
|
|
scale = float(1.0 / (head_size**0.5))
|
|
query = torch.empty(num_seqs,
|
|
num_query_heads,
|
|
head_size,
|
|
dtype=dtype,
|
|
device=device)
|
|
query.uniform_(-scale, scale)
|
|
|
|
assert num_query_heads % num_kv_heads == 0
|
|
alibi_slopes = None
|
|
if use_alibi:
|
|
alibi_slopes = torch.randn(num_query_heads,
|
|
dtype=torch.float,
|
|
device=device)
|
|
|
|
seq_lens = [seq_len for _ in range(num_seqs)]
|
|
max_seq_len = max(seq_lens)
|
|
seq_lens = torch.tensor(seq_lens, dtype=torch.int, device=device)
|
|
|
|
# Create the block tables.
|
|
max_num_blocks_per_seq = (max_seq_len + block_size - 1) // block_size
|
|
block_tables_lst: List[List[int]] = []
|
|
for _ in range(num_seqs):
|
|
block_table = [
|
|
random.randint(0, NUM_BLOCKS - 1)
|
|
for _ in range(max_num_blocks_per_seq)
|
|
]
|
|
block_tables_lst.append(block_table)
|
|
|
|
block_tables = torch.tensor(block_tables_lst,
|
|
dtype=torch.int,
|
|
device=device)
|
|
|
|
# Create the KV cache.
|
|
key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
|
|
block_size,
|
|
1,
|
|
num_kv_heads,
|
|
head_size,
|
|
kv_cache_dtype,
|
|
dtype,
|
|
device=device)
|
|
key_cache, value_cache = key_caches[0], value_caches[0]
|
|
|
|
# Prepare for the paged attention kernel.
|
|
output = torch.empty_like(query)
|
|
if version == "v2":
|
|
num_partitions = ((max_seq_len + PARTITION_SIZE - 1) // PARTITION_SIZE)
|
|
tmp_output = torch.empty(
|
|
size=(num_seqs, num_query_heads, num_partitions, head_size),
|
|
dtype=output.dtype,
|
|
device=output.device,
|
|
)
|
|
exp_sums = torch.empty(
|
|
size=(num_seqs, num_query_heads, num_partitions),
|
|
dtype=torch.float32,
|
|
device=output.device,
|
|
)
|
|
max_logits = torch.empty_like(exp_sums)
|
|
|
|
def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
|
|
torch.cuda.synchronize()
|
|
if profile:
|
|
torch.cuda.cudart().cudaProfilerStart()
|
|
start_time = time.perf_counter()
|
|
|
|
# Using default kv_scale
|
|
k_scale = v_scale = torch.tensor(1.0,
|
|
dtype=torch.float32,
|
|
device=device)
|
|
|
|
for _ in range(num_iters):
|
|
if version == "v1":
|
|
ops.paged_attention_v1(
|
|
output,
|
|
query,
|
|
key_cache,
|
|
value_cache,
|
|
num_kv_heads,
|
|
scale,
|
|
block_tables,
|
|
seq_lens,
|
|
block_size,
|
|
max_seq_len,
|
|
alibi_slopes,
|
|
kv_cache_dtype,
|
|
k_scale,
|
|
v_scale,
|
|
)
|
|
elif version == "v2":
|
|
ops.paged_attention_v2(
|
|
output,
|
|
exp_sums,
|
|
max_logits,
|
|
tmp_output,
|
|
query,
|
|
key_cache,
|
|
value_cache,
|
|
num_kv_heads,
|
|
scale,
|
|
block_tables,
|
|
seq_lens,
|
|
block_size,
|
|
max_seq_len,
|
|
alibi_slopes,
|
|
kv_cache_dtype,
|
|
k_scale,
|
|
v_scale,
|
|
)
|
|
else:
|
|
raise ValueError(f"Invalid version: {version}")
|
|
torch.cuda.synchronize()
|
|
|
|
end_time = time.perf_counter()
|
|
if profile:
|
|
torch.cuda.cudart().cudaProfilerStart()
|
|
return (end_time - start_time) / num_iters
|
|
|
|
# Warmup.
|
|
print("Warming up...")
|
|
run_benchmark = run_cuda_benchmark
|
|
run_benchmark(num_iters=3, profile=False)
|
|
|
|
# Benchmark.
|
|
if do_profile:
|
|
latency = run_benchmark(num_iters=1, profile=True)
|
|
else:
|
|
latency = run_benchmark(num_iters=100, profile=False)
|
|
print(f"Kernel running time: {latency * 1000000:.3f} us")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = FlexibleArgumentParser(
|
|
description="Benchmark the paged attention kernel.")
|
|
parser.add_argument("--version",
|
|
type=str,
|
|
choices=["v1", "v2"],
|
|
default="v2")
|
|
parser.add_argument("--batch-size", type=int, default=8)
|
|
parser.add_argument("--seq-len", type=int, default=4096)
|
|
parser.add_argument("--num-query-heads", type=int, default=64)
|
|
parser.add_argument("--num-kv-heads", type=int, default=8)
|
|
parser.add_argument("--head-size",
|
|
type=int,
|
|
choices=[64, 80, 96, 112, 120, 128, 192, 256],
|
|
default=128)
|
|
parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
|
|
parser.add_argument("--use-alibi", action="store_true")
|
|
parser.add_argument("--dtype",
|
|
type=str,
|
|
choices=["half", "bfloat16", "float"],
|
|
default="half")
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--profile", action="store_true")
|
|
parser.add_argument(
|
|
"--kv-cache-dtype",
|
|
type=str,
|
|
choices=["auto", "fp8", "fp8_e5m2", "fp8_e4m3"],
|
|
default="auto",
|
|
help="Data type for kv cache storage. If 'auto', will use model "
|
|
"data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. "
|
|
"ROCm (AMD GPU) supports fp8 (=fp8_e4m3)")
|
|
args = parser.parse_args()
|
|
print(args)
|
|
|
|
if args.num_query_heads % args.num_kv_heads != 0:
|
|
raise ValueError("num_query_heads must be divisible by num_kv_heads")
|
|
main(
|
|
version=args.version,
|
|
num_seqs=args.batch_size,
|
|
seq_len=args.seq_len,
|
|
num_query_heads=args.num_query_heads,
|
|
num_kv_heads=args.num_kv_heads,
|
|
head_size=args.head_size,
|
|
block_size=args.block_size,
|
|
use_alibi=args.use_alibi,
|
|
dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
|
|
seed=args.seed,
|
|
do_profile=args.profile,
|
|
kv_cache_dtype=args.kv_cache_dtype,
|
|
)
|