vllm/tests/quantization/test_bitsandbytes.py
dongmao zhang 87525fab92
[bitsandbytes]: support read bnb pre-quantized model (#5753)
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2024-07-23 23:45:09 +00:00

87 lines
3.7 KiB
Python

'''Tests whether bitsandbytes computation is enabled correctly.
Run `pytest tests/quantization/test_bitsandbytes.py`.
'''
import pytest
import torch
from tests.quantization.utils import is_quant_method_supported
from vllm import SamplingParams
models_to_test = [
('huggyllama/llama-7b', 'quantize model inflight'),
('lllyasviel/omost-llama-3-8b-4bits', 'read pre-quantized model'),
]
@pytest.mark.skipif(not is_quant_method_supported("bitsandbytes"),
reason='bitsandbytes is not supported on this GPU type.')
@pytest.mark.parametrize("model_name, description", models_to_test)
def test_load_bnb_model(vllm_runner, model_name, description) -> None:
with vllm_runner(model_name,
quantization='bitsandbytes',
load_format='bitsandbytes',
enforce_eager=True) as llm:
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
# check the weights in MLP & SelfAttention are quantized to torch.uint8
qweight = model.model.layers[0].mlp.gate_up_proj.qweight
assert qweight.dtype == torch.uint8, (
f'Expected gate_up_proj dtype torch.uint8 but got {qweight.dtype}')
qweight = model.model.layers[0].mlp.down_proj.qweight
assert qweight.dtype == torch.uint8, (
f'Expected down_proj dtype torch.uint8 but got {qweight.dtype}')
qweight = model.model.layers[0].self_attn.o_proj.qweight
assert qweight.dtype == torch.uint8, (
f'Expected o_proj dtype torch.uint8 but got {qweight.dtype}')
qweight = model.model.layers[0].self_attn.qkv_proj.qweight
assert qweight.dtype == torch.uint8, (
f'Expected qkv_proj dtype torch.uint8 but got {qweight.dtype}')
# some weights should not be quantized
weight = model.lm_head.weight
assert weight.dtype != torch.uint8, (
'lm_head weight dtype should not be torch.uint8')
weight = model.model.embed_tokens.weight
assert weight.dtype != torch.uint8, (
'embed_tokens weight dtype should not be torch.uint8')
weight = model.model.layers[0].input_layernorm.weight
assert weight.dtype != torch.uint8, (
'input_layernorm weight dtype should not be torch.uint8')
weight = model.model.layers[0].post_attention_layernorm.weight
assert weight.dtype != torch.uint8, (
'input_layernorm weight dtype should not be torch.uint8')
# check the output of the model is expected
sampling_params = SamplingParams(temperature=0.0,
logprobs=1,
prompt_logprobs=1,
max_tokens=8)
prompts = ['That which does not kill us', 'To be or not to be,']
expected_outputs = [
'That which does not kill us makes us stronger.',
'To be or not to be, that is the question.'
]
outputs = llm.generate(prompts, sampling_params=sampling_params)
assert len(outputs) == len(prompts)
for index in range(len(outputs)):
# compare the first line of the output
actual_output = outputs[index][1][0].split('\n', 1)[0]
expected_output = expected_outputs[index].split('\n', 1)[0]
assert len(actual_output) >= len(expected_output), (
f'Actual {actual_output} should be larger than or equal to '
f'expected {expected_output}')
actual_output = actual_output[:len(expected_output)]
assert actual_output == expected_output, (
f'Expected: {expected_output}, but got: {actual_output}')