
Signed-off-by: Isotr0py <2037008807@qq.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
647 lines
27 KiB
Python
647 lines
27 KiB
Python
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only DeepseekV2 model."""
|
|
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import (get_pp_group,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_reduce)
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
MergedColumnParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsPP
|
|
from .utils import (PPMissingLayer, is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory, make_layers,
|
|
maybe_prefix)
|
|
|
|
|
|
class DeepseekV2MLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
reduce_results: bool = True,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size, [intermediate_size] * 2,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate_up_proj")
|
|
self.down_proj = RowParallelLinear(intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
reduce_results=reduce_results,
|
|
prefix=f"{prefix}.down_proj")
|
|
if hidden_act != "silu":
|
|
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
|
"Only silu is supported for now.")
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x):
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class DeepseekV2MoE(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.routed_scaling_factor = config.routed_scaling_factor
|
|
self.n_shared_experts = config.n_shared_experts
|
|
self.routed_scaling_factor = config.routed_scaling_factor
|
|
if self.tp_size > config.n_routed_experts:
|
|
raise ValueError(
|
|
f"Tensor parallel size {self.tp_size} is greater than "
|
|
f"the number of experts {config.n_routed_experts}.")
|
|
|
|
if config.hidden_act != "silu":
|
|
raise ValueError(f"Unsupported activation: {config.hidden_act}. "
|
|
"Only silu is supported for now.")
|
|
|
|
self.experts = FusedMoE(num_experts=config.n_routed_experts,
|
|
top_k=config.num_experts_per_tok,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.moe_intermediate_size,
|
|
reduce_results=False,
|
|
renormalize=config.norm_topk_prob,
|
|
quant_config=quant_config,
|
|
use_grouped_topk=True,
|
|
num_expert_group=config.n_group,
|
|
topk_group=config.topk_group,
|
|
prefix=f"{prefix}.experts")
|
|
|
|
self.gate = ReplicatedLinear(config.hidden_size,
|
|
config.n_routed_experts,
|
|
bias=False,
|
|
quant_config=None,
|
|
prefix=f"{prefix}.gate")
|
|
if config.n_shared_experts is not None:
|
|
intermediate_size = (config.moe_intermediate_size *
|
|
config.n_shared_experts)
|
|
self.shared_experts = DeepseekV2MLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
reduce_results=False,
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
num_tokens, hidden_dim = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
if self.n_shared_experts is not None:
|
|
shared_output = self.shared_experts(hidden_states)
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits, _ = self.gate(hidden_states)
|
|
final_hidden_states = self.experts(
|
|
hidden_states=hidden_states,
|
|
router_logits=router_logits) * self.routed_scaling_factor
|
|
if shared_output is not None:
|
|
final_hidden_states = final_hidden_states + shared_output
|
|
if self.tp_size > 1:
|
|
final_hidden_states = tensor_model_parallel_all_reduce(
|
|
final_hidden_states)
|
|
|
|
return final_hidden_states.view(num_tokens, hidden_dim)
|
|
|
|
|
|
def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
|
|
import math
|
|
if scale <= 1:
|
|
return 1.0
|
|
return 0.1 * mscale * math.log(scale) + 1.0
|
|
|
|
|
|
class DeepseekV2Attention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
qk_nope_head_dim: int,
|
|
qk_rope_head_dim: int,
|
|
v_head_dim: int,
|
|
q_lora_rank: int,
|
|
kv_lora_rank: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: Optional[Dict[str, Any]] = None,
|
|
max_position_embeddings: int = 8192,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
self.qk_nope_head_dim = qk_nope_head_dim
|
|
self.qk_rope_head_dim = qk_rope_head_dim
|
|
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
|
self.v_head_dim = v_head_dim
|
|
self.q_lora_rank = q_lora_rank
|
|
self.kv_lora_rank = kv_lora_rank
|
|
self.num_heads = num_heads
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
assert num_heads % tp_size == 0
|
|
self.num_local_heads = num_heads // tp_size
|
|
self.scaling = self.qk_head_dim**-0.5
|
|
self.rope_theta = rope_theta
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
if self.q_lora_rank is not None:
|
|
self.q_a_proj = ReplicatedLinear(self.hidden_size,
|
|
self.q_lora_rank,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.q_a_proj")
|
|
self.q_a_layernorm = RMSNorm(self.q_lora_rank,
|
|
eps=config.rms_norm_eps)
|
|
self.q_b_proj = ColumnParallelLinear(q_lora_rank,
|
|
self.num_heads *
|
|
self.qk_head_dim,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.q_b_proj")
|
|
else:
|
|
self.q_proj = ColumnParallelLinear(self.hidden_size,
|
|
self.num_heads *
|
|
self.qk_head_dim,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.q_proj")
|
|
|
|
self.kv_a_proj_with_mqa = ReplicatedLinear(
|
|
self.hidden_size,
|
|
self.kv_lora_rank + self.qk_rope_head_dim,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.kv_a_proj_with_mqa")
|
|
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
|
|
eps=config.rms_norm_eps)
|
|
self.kv_b_proj = ColumnParallelLinear(
|
|
self.kv_lora_rank,
|
|
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.kv_b_proj")
|
|
# O projection.
|
|
self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
|
|
self.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj")
|
|
if rope_scaling:
|
|
rope_scaling["rope_type"] = 'deepseek_yarn'
|
|
self.use_normal_rope = False
|
|
else:
|
|
self.use_normal_rope = True
|
|
self.rotary_emb = get_rope(qk_rope_head_dim,
|
|
rotary_dim=qk_rope_head_dim,
|
|
max_position=max_position_embeddings,
|
|
base=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
is_neox_style=False)
|
|
|
|
if rope_scaling:
|
|
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
|
|
scaling_factor = rope_scaling["factor"]
|
|
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
|
|
self.scaling = self.scaling * mscale * mscale
|
|
|
|
# self.attn = Attention(self.num_heads,
|
|
# self.qk_head_dim,
|
|
# self.scaling,
|
|
# num_kv_heads=self.num_heads)
|
|
|
|
# TODO, support head_size 192
|
|
self.attn = Attention(self.num_local_heads,
|
|
256,
|
|
self.scaling,
|
|
num_kv_heads=self.num_local_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
if self.q_lora_rank is not None:
|
|
q = self.q_a_proj(hidden_states)[0]
|
|
q = self.q_a_layernorm(q)
|
|
q = self.q_b_proj(q)[0].view(-1, self.num_local_heads,
|
|
self.qk_head_dim)
|
|
else:
|
|
q = self.q_proj(hidden_states)[0].view(-1, self.num_local_heads,
|
|
self.qk_head_dim)
|
|
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim],
|
|
dim=-1)
|
|
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
|
|
kv_a, _ = latent_cache.split(
|
|
[self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
|
latent_cache = latent_cache.unsqueeze(1)
|
|
kv_a = self.kv_a_layernorm(kv_a.contiguous())
|
|
kv = self.kv_b_proj(kv_a)[0]
|
|
kv = kv.view(-1, self.num_local_heads,
|
|
self.qk_nope_head_dim + self.v_head_dim)
|
|
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
|
k_pe = latent_cache[:, :, self.kv_lora_rank:]
|
|
|
|
if self.use_normal_rope:
|
|
seq_len = positions.size(0)
|
|
ori_q_pe_shape, ori_k_pe_shape = q_pe.shape, k_pe.shape
|
|
q_pe = q_pe.reshape(seq_len, -1)
|
|
k_pe = k_pe.reshape(seq_len, -1)
|
|
|
|
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
|
|
|
|
if self.use_normal_rope:
|
|
q_pe, k_pe = q_pe.view(ori_q_pe_shape), k_pe.view(ori_k_pe_shape)
|
|
|
|
q[..., self.qk_nope_head_dim:] = q_pe
|
|
k = torch.empty_like(q)
|
|
k[..., :self.qk_nope_head_dim] = k_nope
|
|
k[..., self.qk_nope_head_dim:] = k_pe
|
|
q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim],
|
|
value=0).view(-1,
|
|
self.num_local_heads * 256)
|
|
k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim],
|
|
value=0).view(-1,
|
|
self.num_local_heads * 256)
|
|
v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim],
|
|
value=0).view(-1,
|
|
self.num_local_heads * 256)
|
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
|
attn_output = attn_output.view(
|
|
-1, self.num_local_heads, 256)[..., :self.v_head_dim].reshape(
|
|
-1, self.num_local_heads * self.v_head_dim)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class DeepseekV2DecoderLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
prefix: str,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings",
|
|
8192)
|
|
# DecoderLayers are created with `make_layers` which passes the prefix
|
|
# with the layer's index.
|
|
layer_idx = int(prefix.split(sep='.')[-1])
|
|
self.self_attn = DeepseekV2Attention(
|
|
config=config,
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
qk_nope_head_dim=config.qk_nope_head_dim,
|
|
qk_rope_head_dim=config.qk_rope_head_dim,
|
|
v_head_dim=config.v_head_dim,
|
|
q_lora_rank=config.q_lora_rank
|
|
if hasattr(config, "q_lora_rank") else None,
|
|
kv_lora_rank=config.kv_lora_rank,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
max_position_embeddings=max_position_embeddings,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
|
|
if (config.n_routed_experts is not None
|
|
and layer_idx >= config.first_k_dense_replace
|
|
and layer_idx % config.moe_layer_freq == 0):
|
|
self.mlp = DeepseekV2MoE(
|
|
config=config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
else:
|
|
self.mlp = DeepseekV2MLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
self.input_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
residual: Optional[torch.Tensor],
|
|
) -> torch.Tensor:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(
|
|
hidden_states, residual)
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.post_attention_layernorm(
|
|
hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile
|
|
class DeepseekV2Model(nn.Module):
|
|
|
|
fall_back_to_pt_during_load = False
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
if get_pp_group().is_first_rank:
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
else:
|
|
self.embed_tokens = PPMissingLayer()
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: DeepseekV2DecoderLayer(
|
|
config,
|
|
prefix,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
),
|
|
prefix=f"{prefix}.layers")
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
else:
|
|
self.norm = PPMissingLayer()
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size))
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors],
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
for i in range(self.start_layer, self.end_layer):
|
|
layer = self.layers[i]
|
|
hidden_states, residual = layer(positions, hidden_states,
|
|
kv_caches[i - self.start_layer],
|
|
attn_metadata, residual)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({
|
|
"hidden_states": hidden_states,
|
|
"residual": residual
|
|
})
|
|
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class DeepseekV2ForCausalLM(nn.Module, SupportsPP):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.model = DeepseekV2Model(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "model"))
|
|
self.lm_head = ParallelLMHead(config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config)
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.sampler = get_sampler()
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
hidden_states = self.model(input_ids, positions, kv_caches,
|
|
attn_metadata, intermediate_tensors,
|
|
inputs_embeds)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: Optional[torch.Tensor],
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def make_empty_intermediate_tensors(
|
|
self, batch_size: int, dtype: torch.dtype,
|
|
device: torch.device) -> IntermediateTensors:
|
|
return IntermediateTensors({
|
|
"hidden_states":
|
|
torch.zeros((batch_size, self.config.hidden_size),
|
|
dtype=dtype,
|
|
device=device),
|
|
"residual":
|
|
torch.zeros((batch_size, self.config.hidden_size),
|
|
dtype=dtype,
|
|
device=device),
|
|
})
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.n_routed_experts)
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: Set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if weight_name not in name:
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if (("mlp.experts." in name) and name not in params_dict):
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param,
|
|
loaded_weight,
|
|
name,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|