
As mentioned in RFC https://github.com/vllm-project/vllm/issues/12254, this PR achieves the task: combine allocate_slots and append_slots. There should be no functionality change, except that in decode, also raise exception when num_tokens is zero (like prefill), and change the unit test case accordingly. @comaniac @rickyyx @WoosukKwon @youkaichao @heheda12345 @simon-mo --------- Signed-off-by: Shawn Du <shawnd200@outlook.com>
641 lines
26 KiB
Python
641 lines
26 KiB
Python
from collections import deque
|
|
from dataclasses import dataclass
|
|
from typing import (TYPE_CHECKING, Deque, Dict, Iterable, List, Optional, Set,
|
|
Tuple, Union)
|
|
|
|
from vllm.config import CacheConfig, LoRAConfig, ModelConfig, SchedulerConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.v1.core.encoder_cache_manager import (EncoderCacheManager,
|
|
compute_encoder_budget)
|
|
from vllm.v1.core.kv_cache_manager import KVCacheManager
|
|
from vllm.v1.engine import EngineCoreOutput, EngineCoreOutputs
|
|
from vllm.v1.metrics.stats import SchedulerStats
|
|
from vllm.v1.outputs import ModelRunnerOutput
|
|
from vllm.v1.request import Request, RequestStatus
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.multimodal import MultiModalKwargs
|
|
from vllm.multimodal.base import PlaceholderRange
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class Scheduler:
|
|
|
|
def __init__(
|
|
self,
|
|
scheduler_config: SchedulerConfig,
|
|
model_config: ModelConfig,
|
|
cache_config: CacheConfig,
|
|
lora_config: Optional[LoRAConfig],
|
|
) -> None:
|
|
self.scheduler_config = scheduler_config
|
|
self.cache_config = cache_config
|
|
self.lora_config = lora_config
|
|
# TODO: Support LoRA.
|
|
assert lora_config is None, "V1 does not support LoRA yet."
|
|
|
|
# Scheduling constraints.
|
|
self.max_num_running_reqs = self.scheduler_config.max_num_seqs
|
|
self.max_num_scheduled_tokens = \
|
|
self.scheduler_config.max_num_batched_tokens
|
|
self.max_model_len = self.scheduler_config.max_model_len
|
|
|
|
num_gpu_blocks = cache_config.num_gpu_blocks
|
|
assert isinstance(num_gpu_blocks, int) and num_gpu_blocks > 0
|
|
# Create the KV cache manager.
|
|
self.kv_cache_manager = KVCacheManager(
|
|
block_size=self.cache_config.block_size,
|
|
num_gpu_blocks=num_gpu_blocks,
|
|
max_model_len=self.max_model_len,
|
|
sliding_window=self.cache_config.sliding_window,
|
|
enable_caching=self.cache_config.enable_prefix_caching)
|
|
self.block_size = self.cache_config.block_size
|
|
|
|
# req_id -> Request
|
|
self.requests: Dict[str, Request] = {}
|
|
# Priority queues for requests.
|
|
self.waiting: Deque[Request] = deque()
|
|
self.running: List[Request] = []
|
|
|
|
# The request IDs that are finished in between the previous and the
|
|
# current steps. This is used to notify the workers about the finished
|
|
# requests so that they can free the cached states for those requests.
|
|
# This is flushed at the end of each scheduling step.
|
|
self.finished_req_ids: Set[str] = set()
|
|
|
|
# OPTIMIZATION: Cache the RunningRequestData objects to avoid creating
|
|
# them at each scheduling step.
|
|
# Request id -> RunningRequestData
|
|
self.running_reqs_data: Dict[str, RunningRequestData] = {}
|
|
|
|
# Encoder-related.
|
|
# Calculate encoder cache size if applicable
|
|
# NOTE: For now we use the same budget for both compute and space.
|
|
# This can be changed when we make encoder cache for embedding caching
|
|
# across requests.
|
|
encoder_compute_budget, encoder_cache_size = compute_encoder_budget(
|
|
model_config=model_config,
|
|
scheduler_config=scheduler_config,
|
|
)
|
|
|
|
# NOTE(woosuk): Here, "encoder" includes the vision encoder (and
|
|
# projector if needed). Currently, we assume that the encoder also
|
|
# has the Transformer architecture (e.g., ViT).
|
|
self.max_num_encoder_input_tokens = encoder_compute_budget
|
|
# NOTE: For the models without encoder (e.g., text-only models),
|
|
# the encoder cache will not be initialized because cache size is 0
|
|
# for these models.
|
|
self.encoder_cache_manager = EncoderCacheManager(
|
|
cache_size=encoder_cache_size)
|
|
|
|
def schedule(self) -> "SchedulerOutput":
|
|
# NOTE(woosuk) on the scheduling algorithm:
|
|
# There's no "decoding phase" nor "prefill phase" in the scheduler.
|
|
# Each request just has the num_computed_tokens and num_tokens,
|
|
# which is equal to len(prompt_token_ids) + len(output_token_ids).
|
|
# At each step, the scheduler tries to assign tokens to the requests
|
|
# so that each request's num_computed_tokens can catch up its
|
|
# num_tokens. This is general enough to cover chunked prefills,
|
|
# prefix caching, and the "jump decoding" optimization in the future.
|
|
|
|
scheduled_new_reqs: List[Request] = []
|
|
scheduled_resumed_reqs: List[Request] = []
|
|
scheduled_running_reqs: List[Request] = []
|
|
preempted_reqs: List[Request] = []
|
|
|
|
req_to_new_block_ids: Dict[str, List[int]] = {}
|
|
num_scheduled_tokens: Dict[str, int] = {}
|
|
token_budget = self.max_num_scheduled_tokens
|
|
# Encoder-related.
|
|
scheduled_encoder_inputs: Dict[str, List[int]] = {}
|
|
encoder_budget = self.max_num_encoder_input_tokens
|
|
|
|
# First, schedule the RUNNING requests.
|
|
# NOTE(woosuk): At most 1 request in the RUNNING queue is allowed to be
|
|
# in the "partial" state, where the request has some tokens computed
|
|
# but not all. The constraint is due to the persistent batch in the
|
|
# V1 model runner.
|
|
# TODO(woosuk): Remove this constraint after refactoring model runner.
|
|
has_partial_request = False
|
|
req_index = 0
|
|
while req_index < len(self.running):
|
|
# Only the last request in the RUNNING queue can be "partial".
|
|
assert not has_partial_request
|
|
assert token_budget > 0
|
|
request = self.running[req_index]
|
|
num_new_tokens = request.num_tokens - request.num_computed_tokens
|
|
num_new_tokens = min(num_new_tokens, token_budget)
|
|
assert num_new_tokens > 0
|
|
|
|
# Schedule encoder inputs.
|
|
encoder_inputs_to_schedule, num_new_tokens, new_encoder_budget = (
|
|
self._try_schedule_encoder_inputs(request,
|
|
request.num_computed_tokens,
|
|
num_new_tokens,
|
|
encoder_budget))
|
|
assert num_new_tokens > 0
|
|
|
|
while True:
|
|
new_blocks = self.kv_cache_manager.allocate_slots(
|
|
request, num_new_tokens)
|
|
if new_blocks is None:
|
|
# The request cannot be scheduled.
|
|
# Preempt the lowest-priority request.
|
|
preempted_req = self.running.pop()
|
|
self.kv_cache_manager.free(preempted_req)
|
|
preempted_req.status = RequestStatus.PREEMPTED
|
|
preempted_req.num_computed_tokens = 0
|
|
|
|
self.waiting.appendleft(preempted_req)
|
|
preempted_reqs.append(preempted_req)
|
|
if preempted_req == request:
|
|
# No more request to preempt.
|
|
can_schedule = False
|
|
break
|
|
else:
|
|
# The request can be scheduled.
|
|
can_schedule = True
|
|
break
|
|
if not can_schedule:
|
|
break
|
|
assert new_blocks is not None
|
|
|
|
# Schedule the request.
|
|
scheduled_running_reqs.append(request)
|
|
req_to_new_block_ids[request.request_id] = [
|
|
b.block_id for b in new_blocks
|
|
]
|
|
num_scheduled_tokens[request.request_id] = num_new_tokens
|
|
token_budget -= num_new_tokens
|
|
req_index += 1
|
|
has_partial_request = (request.num_computed_tokens + num_new_tokens
|
|
< request.num_tokens)
|
|
|
|
# Encoder-related.
|
|
if encoder_inputs_to_schedule:
|
|
scheduled_encoder_inputs[request.request_id] = (
|
|
encoder_inputs_to_schedule)
|
|
# Allocate the encoder cache.
|
|
for i in encoder_inputs_to_schedule:
|
|
self.encoder_cache_manager.allocate(request, i)
|
|
encoder_budget = new_encoder_budget
|
|
|
|
# Next, schedule the WAITING requests.
|
|
if not preempted_reqs:
|
|
while self.waiting:
|
|
if has_partial_request:
|
|
break
|
|
if len(self.running) == self.max_num_running_reqs:
|
|
break
|
|
if token_budget == 0:
|
|
break
|
|
|
|
request = self.waiting[0]
|
|
# Get already-cached tokens.
|
|
computed_blocks, num_computed_tokens = \
|
|
self.kv_cache_manager.get_computed_blocks(request)
|
|
# Number of tokens to be scheduled.
|
|
# We use `request.num_tokens` instead of
|
|
# `request.num_prompt_tokens` to consider the resumed requests,
|
|
# which have output tokens.
|
|
num_new_tokens = request.num_tokens - num_computed_tokens
|
|
if num_new_tokens == 0:
|
|
# This happens when prompt length is divisible by the block
|
|
# size and all blocks are cached. Now we force to recompute
|
|
# the last block. Note that we have to re-compute an entire
|
|
# block because allocate_slots() assumes num_computed_tokens
|
|
# is always a multiple of the block size. This limitation
|
|
# can potentially be removed in the future to slightly
|
|
# improve the performance.
|
|
num_computed_tokens -= self.block_size
|
|
num_new_tokens = self.block_size
|
|
computed_blocks.pop()
|
|
num_new_tokens = min(num_new_tokens, token_budget)
|
|
assert num_new_tokens > 0
|
|
|
|
# Schedule encoder inputs.
|
|
(encoder_inputs_to_schedule, num_new_tokens,
|
|
new_encoder_budget) = self._try_schedule_encoder_inputs(
|
|
request, num_computed_tokens, num_new_tokens,
|
|
encoder_budget)
|
|
if num_new_tokens == 0:
|
|
# The request cannot be scheduled.
|
|
break
|
|
|
|
new_blocks = self.kv_cache_manager.allocate_slots(
|
|
request, num_new_tokens, computed_blocks)
|
|
if new_blocks is None:
|
|
# The request cannot be scheduled.
|
|
break
|
|
|
|
self.waiting.popleft()
|
|
self.running.append(request)
|
|
if request.status == RequestStatus.WAITING:
|
|
scheduled_new_reqs.append(request)
|
|
elif request.status == RequestStatus.PREEMPTED:
|
|
scheduled_resumed_reqs.append(request)
|
|
else:
|
|
raise RuntimeError(
|
|
f"Invalid request status: {request.status}")
|
|
|
|
req_to_new_block_ids[request.request_id] = [
|
|
b.block_id for b in computed_blocks + new_blocks
|
|
]
|
|
num_scheduled_tokens[request.request_id] = num_new_tokens
|
|
token_budget -= num_new_tokens
|
|
request.status = RequestStatus.RUNNING
|
|
request.num_computed_tokens = num_computed_tokens
|
|
has_partial_request = (num_computed_tokens + num_new_tokens
|
|
< request.num_tokens)
|
|
|
|
# Encoder-related.
|
|
if encoder_inputs_to_schedule:
|
|
scheduled_encoder_inputs[request.request_id] = (
|
|
encoder_inputs_to_schedule)
|
|
# Allocate the encoder cache.
|
|
for i in encoder_inputs_to_schedule:
|
|
self.encoder_cache_manager.allocate(request, i)
|
|
encoder_budget = new_encoder_budget
|
|
|
|
# Check if the scheduling constraints are satisfied.
|
|
total_num_scheduled_tokens = sum(num_scheduled_tokens.values())
|
|
assert total_num_scheduled_tokens <= self.max_num_scheduled_tokens
|
|
assert token_budget >= 0
|
|
assert len(self.running) <= self.max_num_running_reqs
|
|
assert (len(scheduled_new_reqs) + len(scheduled_resumed_reqs) +
|
|
len(scheduled_running_reqs) == len(self.running))
|
|
|
|
# Get the longest common prefix among all requests in the running queue.
|
|
# This can be potentially used for cascade attention.
|
|
num_common_prefix_blocks = 0
|
|
if self.running:
|
|
any_request = self.running[0]
|
|
num_common_prefix_blocks = (
|
|
self.kv_cache_manager.get_num_common_prefix_blocks(
|
|
any_request, len(self.running)))
|
|
|
|
# Construct the scheduler output.
|
|
new_reqs_data = [
|
|
NewRequestData.from_request(req,
|
|
req_to_new_block_ids[req.request_id],
|
|
req.num_computed_tokens)
|
|
for req in scheduled_new_reqs
|
|
]
|
|
resumed_reqs_data = [
|
|
ResumedRequestData.from_request(
|
|
req, req_to_new_block_ids[req.request_id],
|
|
req.num_computed_tokens) for req in scheduled_resumed_reqs
|
|
]
|
|
running_reqs_data = [
|
|
self._make_running_request_data(
|
|
req, req_to_new_block_ids[req.request_id],
|
|
req.num_computed_tokens) for req in scheduled_running_reqs
|
|
]
|
|
preempted_req_ids = {req.request_id for req in preempted_reqs}
|
|
scheduler_output = SchedulerOutput(
|
|
scheduled_new_reqs=new_reqs_data,
|
|
scheduled_resumed_reqs=resumed_reqs_data,
|
|
scheduled_running_reqs=running_reqs_data,
|
|
num_scheduled_tokens=num_scheduled_tokens,
|
|
total_num_scheduled_tokens=total_num_scheduled_tokens,
|
|
scheduled_encoder_inputs=scheduled_encoder_inputs,
|
|
num_common_prefix_blocks=num_common_prefix_blocks,
|
|
preempted_req_ids=preempted_req_ids,
|
|
# finished_req_ids is an existing state in the scheduler,
|
|
# instead of being newly scheduled in this step.
|
|
# It contains the request IDs that are finished in between
|
|
# the previous and the current steps.
|
|
finished_req_ids=self.finished_req_ids,
|
|
free_encoder_input_ids=self.encoder_cache_manager.get_freed_ids(),
|
|
)
|
|
|
|
self.finished_req_ids = set()
|
|
return scheduler_output
|
|
|
|
def _make_running_request_data(
|
|
self,
|
|
request: Request,
|
|
new_block_ids: List[int],
|
|
num_computed_tokens: int,
|
|
) -> "RunningRequestData":
|
|
# OPTIMIZATION: Cache the RunningRequestData objects to avoid creating
|
|
# them at each scheduling step.
|
|
if request.request_id in self.running_reqs_data:
|
|
req_data = self.running_reqs_data[request.request_id]
|
|
req_data.new_block_ids = new_block_ids
|
|
req_data.num_computed_tokens = num_computed_tokens
|
|
else:
|
|
req_data = RunningRequestData.from_request(request, new_block_ids,
|
|
num_computed_tokens)
|
|
self.running_reqs_data[request.request_id] = req_data
|
|
return req_data
|
|
|
|
def _try_schedule_encoder_inputs(
|
|
self,
|
|
request: Request,
|
|
num_computed_tokens: int,
|
|
num_new_tokens: int,
|
|
encoder_budget: int,
|
|
) -> Tuple[List[int], int, int]:
|
|
"""
|
|
Determine which encoder inputs need to be scheduled in the current step,
|
|
and update `num_new_tokens` and encoder token budget accordingly.
|
|
|
|
An encoder input will be scheduled if:
|
|
- Its output tokens overlap with the range of tokens being computed
|
|
in this step, i.e.,
|
|
[num_computed_tokens, num_computed_tokens + num_new_tokens).
|
|
- It is not already computed and stored in the encoder cache.
|
|
- There is sufficient encoder token budget to process it.
|
|
- The encoder cache has space to store it.
|
|
|
|
If an encoder input cannot be scheduled due to cache or budget
|
|
limitations, the method adjusts `num_new_tokens` to schedule only the
|
|
decoder tokens up to just before the unschedulable encoder input.
|
|
"""
|
|
if not request.has_encoder_inputs():
|
|
return [], num_new_tokens, encoder_budget
|
|
|
|
encoder_inputs_to_schedule: List[int] = []
|
|
mm_positions = request.mm_positions
|
|
assert mm_positions is not None
|
|
assert len(mm_positions) > 0
|
|
for i, pos_info in enumerate(mm_positions):
|
|
start_pos = pos_info["offset"]
|
|
num_encoder_tokens = pos_info["length"]
|
|
|
|
# The encoder output is needed if the two ranges overlap:
|
|
# [num_computed_tokens, num_computed_tokens + num_new_tokens) and
|
|
# [start_pos, start_pos + num_encoder_tokens)
|
|
if start_pos >= num_computed_tokens + num_new_tokens:
|
|
# The encoder input is not needed in this step.
|
|
break
|
|
if start_pos + num_encoder_tokens <= num_computed_tokens:
|
|
# The encoder input is already computed and stored
|
|
# in the decoder's KV cache.
|
|
continue
|
|
|
|
if self.encoder_cache_manager.has_cache(request, i):
|
|
# The encoder input is already computed and cached.
|
|
continue
|
|
if (not self.encoder_cache_manager.can_allocate(request, i)
|
|
or num_encoder_tokens > encoder_budget):
|
|
# The encoder cache is full or the encoder budget is exhausted.
|
|
# NOTE(woosuk): We assume that the encoder input tokens should
|
|
# be processed altogether, as the encoder usually uses
|
|
# bidirectional attention.
|
|
if num_computed_tokens < start_pos:
|
|
# We only schedule the decoder tokens just before the
|
|
# encoder input.
|
|
num_new_tokens = start_pos - num_computed_tokens
|
|
else:
|
|
# Because of prefix caching, num_computed_tokens is greater
|
|
# than start_pos even though its encoder input is not
|
|
# available. In this case, we can't schedule any token for
|
|
# the request in this step.
|
|
num_new_tokens = 0
|
|
break
|
|
|
|
encoder_budget -= num_encoder_tokens
|
|
encoder_inputs_to_schedule.append(i)
|
|
return encoder_inputs_to_schedule, num_new_tokens, encoder_budget
|
|
|
|
def update_from_output(
|
|
self,
|
|
scheduler_output: "SchedulerOutput",
|
|
model_runner_output: "ModelRunnerOutput",
|
|
) -> EngineCoreOutputs:
|
|
# NOTE(woosuk): This method doesn't consider speculative decoding.
|
|
sampled_token_ids = model_runner_output.sampled_token_ids
|
|
num_scheduled_tokens = scheduler_output.num_scheduled_tokens
|
|
new_running: List[Request] = []
|
|
outputs: List[EngineCoreOutput] = []
|
|
|
|
# NOTE(woosuk): As len(self.running) can be up to 1K or more, the below
|
|
# loop can be a performance bottleneck. We should do our best to avoid
|
|
# expensive operations inside the loop.
|
|
for request in self.running:
|
|
req_id = request.request_id
|
|
request.num_computed_tokens += num_scheduled_tokens[req_id]
|
|
# When the request's num_computed_tokens catches up its num_tokens,
|
|
# the request generates output tokens. Otherwise, we ignore the
|
|
# sampler output for the request.
|
|
assert request.num_computed_tokens <= request.num_tokens
|
|
|
|
cached_encoder_input_ids = (
|
|
self.encoder_cache_manager.get_cached_input_ids(request))
|
|
# OPTIMIZATION: Avoid list(set) if the set is empty.
|
|
if cached_encoder_input_ids:
|
|
for input_id in list(cached_encoder_input_ids):
|
|
start_pos = request.mm_positions[input_id]["offset"]
|
|
num_tokens = request.mm_positions[input_id]["length"]
|
|
if start_pos + num_tokens <= request.num_computed_tokens:
|
|
# The encoder output is already processed and stored
|
|
# in the decoder's KV cache.
|
|
self.encoder_cache_manager.free_encoder_input(
|
|
request, input_id)
|
|
|
|
if request.num_computed_tokens == request.num_tokens:
|
|
req_index = model_runner_output.req_id_to_index[req_id]
|
|
# NOTE(woosuk): Currently, we assume that each request
|
|
# generates at most one token at each step.
|
|
token_id = sampled_token_ids[req_index]
|
|
request.append_output_token_ids(token_id)
|
|
num_new_tokens = 1
|
|
# TODO: Update the KV cache manager for prefix caching.
|
|
|
|
# Check for stop and update request state.
|
|
# This must be called before we make the EngineCoreOutput.
|
|
stopped = self._check_stop(request)
|
|
if stopped:
|
|
self._free_request(request)
|
|
|
|
# Add EngineCoreOutput for this Request.
|
|
output = EngineCoreOutput(
|
|
request_id=req_id,
|
|
new_token_ids=request.output_token_ids[-num_new_tokens:],
|
|
finished=request.is_finished(),
|
|
finish_reason=request.get_finished_reason(),
|
|
stop_reason=request.stop_reason)
|
|
outputs.append(output)
|
|
|
|
# Breakout of the loop.
|
|
if stopped:
|
|
continue
|
|
|
|
new_running.append(request)
|
|
self.running = new_running
|
|
return EngineCoreOutputs(
|
|
outputs=outputs,
|
|
scheduler_stats=self.make_stats(),
|
|
)
|
|
|
|
def _check_stop(self, request: Request) -> bool:
|
|
if (request.num_tokens >= self.max_model_len
|
|
or request.num_output_tokens >= request.max_tokens):
|
|
request.status = RequestStatus.FINISHED_LENGTH_CAPPED
|
|
return True
|
|
|
|
sampling_params = request.sampling_params
|
|
last_token_id = request.output_token_ids[-1]
|
|
if (not sampling_params.ignore_eos
|
|
and last_token_id == request.eos_token_id):
|
|
request.status = RequestStatus.FINISHED_STOPPED
|
|
return True
|
|
|
|
if last_token_id in (sampling_params.stop_token_ids or ()):
|
|
request.status = RequestStatus.FINISHED_STOPPED
|
|
request.stop_reason = last_token_id
|
|
return True
|
|
return False
|
|
|
|
def add_request(self, request: Request) -> None:
|
|
self.waiting.append(request)
|
|
self.requests[request.request_id] = request
|
|
|
|
def finish_requests(
|
|
self,
|
|
request_ids: Union[str, Iterable[str]],
|
|
finished_status: RequestStatus,
|
|
) -> None:
|
|
"""Handles the finish signal from outside the scheduler.
|
|
|
|
For example, the API server can abort a request when the client
|
|
disconnects.
|
|
"""
|
|
assert RequestStatus.is_finished(finished_status)
|
|
if isinstance(request_ids, str):
|
|
request_ids = (request_ids, )
|
|
request_ids = set(request_ids)
|
|
|
|
for req_id in request_ids:
|
|
request = self.requests.get(req_id)
|
|
if request is None:
|
|
# Invalid request ID.
|
|
continue
|
|
|
|
if request.status == RequestStatus.RUNNING:
|
|
self.running.remove(request)
|
|
else:
|
|
self.waiting.remove(request)
|
|
request.status = finished_status
|
|
self._free_request(request)
|
|
|
|
def _free_request(self, request: Request) -> None:
|
|
assert request.is_finished()
|
|
self.kv_cache_manager.free(request)
|
|
self.encoder_cache_manager.free(request)
|
|
self.running_reqs_data.pop(request.request_id, None)
|
|
del self.requests[request.request_id]
|
|
self.finished_req_ids.add(request.request_id)
|
|
|
|
def get_num_unfinished_requests(self) -> int:
|
|
return len(self.waiting) + len(self.running)
|
|
|
|
def has_unfinished_requests(self) -> bool:
|
|
return self.get_num_unfinished_requests() > 0
|
|
|
|
def reset_prefix_cache(self) -> bool:
|
|
return self.kv_cache_manager.reset_prefix_cache()
|
|
|
|
def make_stats(self) -> SchedulerStats:
|
|
return SchedulerStats(
|
|
num_running_reqs=len(self.running),
|
|
num_waiting_reqs=len(self.waiting),
|
|
gpu_cache_usage=self.kv_cache_manager.usage,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class NewRequestData:
|
|
|
|
req_id: str
|
|
prompt_token_ids: List[int]
|
|
prompt: Optional[str]
|
|
mm_inputs: List["MultiModalKwargs"]
|
|
mm_hashes: List[str]
|
|
mm_positions: List["PlaceholderRange"]
|
|
sampling_params: SamplingParams
|
|
block_ids: List[int]
|
|
num_computed_tokens: int
|
|
|
|
@classmethod
|
|
def from_request(
|
|
cls,
|
|
request: Request,
|
|
block_ids: List[int],
|
|
num_computed_tokens: int,
|
|
) -> "NewRequestData":
|
|
return cls(
|
|
req_id=request.request_id,
|
|
prompt_token_ids=request.prompt_token_ids,
|
|
prompt=request.prompt,
|
|
mm_inputs=request.mm_inputs,
|
|
mm_hashes=request.mm_hashes,
|
|
mm_positions=request.mm_positions,
|
|
sampling_params=request.sampling_params,
|
|
block_ids=block_ids,
|
|
num_computed_tokens=num_computed_tokens,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ResumedRequestData:
|
|
|
|
req_id: str
|
|
block_ids: List[int]
|
|
num_computed_tokens: int
|
|
|
|
@classmethod
|
|
def from_request(
|
|
cls,
|
|
request: Request,
|
|
block_ids: List[int],
|
|
num_computed_tokens: int,
|
|
) -> "ResumedRequestData":
|
|
return cls(
|
|
req_id=request.request_id,
|
|
block_ids=block_ids,
|
|
num_computed_tokens=num_computed_tokens,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class RunningRequestData:
|
|
|
|
req_id: str
|
|
new_block_ids: List[int]
|
|
num_computed_tokens: int
|
|
|
|
@classmethod
|
|
def from_request(
|
|
cls,
|
|
request: Request,
|
|
new_block_ids: List[int],
|
|
num_computed_tokens: int,
|
|
) -> "RunningRequestData":
|
|
return cls(
|
|
req_id=request.request_id,
|
|
new_block_ids=new_block_ids,
|
|
num_computed_tokens=num_computed_tokens,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class SchedulerOutput:
|
|
|
|
scheduled_new_reqs: List[NewRequestData]
|
|
scheduled_resumed_reqs: List[ResumedRequestData]
|
|
scheduled_running_reqs: List[RunningRequestData]
|
|
|
|
num_scheduled_tokens: Dict[str, int]
|
|
total_num_scheduled_tokens: int
|
|
scheduled_encoder_inputs: Dict[str, List[int]]
|
|
num_common_prefix_blocks: int
|
|
|
|
preempted_req_ids: Set[str]
|
|
finished_req_ids: Set[str]
|
|
free_encoder_input_ids: List[Tuple[str, int]]
|