vllm/cacheflow/worker/worker.py

339 lines
14 KiB
Python

"""A GPU worker class."""
from typing import Dict, List, Optional, Tuple
import torch
from cacheflow.model_executor import (get_model, get_cache_block_size,
InputMetadata, set_random_seed)
from cacheflow.model_executor.parallel_utils.parallel_state import (
initialize_model_parallel,
initialize_all_reduce_launcher,
get_tensor_model_parallel_world_size)
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import (SequenceData, SequenceGroupMetadata,
SequenceOutputs)
from cacheflow.worker.cache_engine import CacheEngine
from cacheflow.utils import get_gpu_memory
class Worker:
"""A worker class that executes (a partition of) the model on a GPU.
Each worker is associated with a single GPU. The worker is responsible for
maintaining the KV cache and executing the model on the GPU. In case of
distributed inference, each worker is assigned a partition of the model.
"""
def __init__(
self,
model_name: str,
dtype: str,
seed: int,
distributed_init_method: str,
rank: int,
world_size: int,
cache_dir: Optional[str],
use_dummy_weights: bool,
use_np_cache: bool,
max_num_batched_tokens: int,
max_num_sequences: int,
tensor_parallel_size: int = 1,
pipeline_parallel_size: int = 1,
) -> None:
self.init_distributed_environment(distributed_init_method,
rank,
world_size,
tensor_parallel_size,
pipeline_parallel_size)
self.worker_id = rank
self.seed = seed
set_random_seed(self.seed)
# Initialize the model.
self.model, self.dtype = get_model(
model_name, dtype=dtype, cache_dir=cache_dir,
use_dummy_weights=use_dummy_weights, use_np_cache=use_np_cache)
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
self.max_num_batched_tokens = max_num_batched_tokens
initialize_all_reduce_launcher(
self.max_num_batched_tokens, self.model.config.hidden_size, self.dtype)
self.max_num_sequences = max_num_sequences
self.num_layers = self.model.config.num_hidden_layers
assert self.model.config.num_attention_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.model.config.num_attention_heads // tensor_model_parallel_world_size
self.head_size = self.model.config.hidden_size // (self.num_heads * tensor_model_parallel_world_size)
# We reset the seed after initializing the model to ensure that
# the random state is not affected by the model initialization.
set_random_seed(seed)
# Uninitialized cache engine. Will be initialized with
# self.init_cache_engine().
self.block_size = None
self.cache_engine = None
self.cache_events = None
self.gpu_cache = None
@torch.inference_mode()
def get_num_available_blocks(
self, block_size: int, cpu_swap_space: int,
gpu_memory_utilization: float) -> Tuple[int, int]:
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
# Profile memory usage with max_num_sequences sequences and the total
# number of tokens equal to max_num_batched_tokens.
# Enable top-k sampling to reflect the accurate memory usage.
sampling_params = SamplingParams(top_p=0.99,
top_k=self.model.config.vocab_size - 1)
seqs = []
for group_id in range(self.max_num_sequences):
seq_len = (self.max_num_batched_tokens // self.max_num_sequences +
(group_id < self.max_num_batched_tokens %
self.max_num_sequences))
seq_data = SequenceData([0] * seq_len)
seq = SequenceGroupMetadata(
group_id=group_id,
is_prompt=True,
seq_data={group_id: seq_data},
sampling_params=sampling_params,
block_tables=None,
)
seqs.append(seq)
input_tokens, input_positions, input_metadata = self.prepare_inputs(seqs)
# Execute the model.
self.model(
input_ids=input_tokens,
positions=input_positions,
kv_caches=[(None, None)] * self.num_layers,
input_metadata=input_metadata,
cache_events=None,
)
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
torch.cuda.synchronize()
peak_memory = torch.cuda.max_memory_allocated()
total_gpu_memory = get_gpu_memory()
cache_block_size = get_cache_block_size(block_size, self.num_heads,
self.head_size, self.num_layers,
self.dtype)
num_gpu_blocks = int((total_gpu_memory * gpu_memory_utilization
- peak_memory) // cache_block_size)
num_cpu_blocks = int(cpu_swap_space // cache_block_size)
torch.cuda.empty_cache()
# Reset the seed to ensure that the model output is not affected by
# the profiling.
set_random_seed(self.seed)
return num_gpu_blocks, num_cpu_blocks
def init_cache_engine(self, block_size: int, num_gpu_blocks: int,
num_cpu_blocks: int):
self.block_size = block_size
self.cache_engine = CacheEngine(
worker_id=self.worker_id,
num_layers=self.num_layers,
num_heads=self.num_heads,
head_size=self.head_size,
block_size=self.block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks,
dtype=self.dtype,
)
self.cache_events = self.cache_engine.events
self.gpu_cache = self.cache_engine.gpu_cache
def init_distributed_environment(self,
distributed_init_method: str,
rank: int,
world_size: int,
tensor_parallel_size: int = 1,
pipeline_parallel_size: int = 1) -> None:
"""Initialize the distributed environment."""
torch.distributed.init_process_group(
backend='nccl',
init_method=distributed_init_method,
world_size=world_size,
rank=rank,
)
# A small all_reduce for warmup.
torch.distributed.all_reduce(torch.zeros(1).cuda())
initialize_model_parallel(tensor_parallel_size,
pipeline_parallel_size)
def prepare_inputs(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.LongTensor, torch.LongTensor, InputMetadata]:
seq_groups: List[Tuple[List[int], SamplingParams]] = []
input_tokens: List[int] = []
input_positions: List[int] = []
slot_mapping: List[int] = []
# Add prompt tokens.
prompt_lens: List[int] = []
for seq_group_metadata in seq_group_metadata_list:
if not seq_group_metadata.is_prompt:
continue
seq_ids = list(seq_group_metadata.seq_data.keys())
sampling_params = seq_group_metadata.sampling_params
seq_groups.append((seq_ids, sampling_params))
# Use any sequence in the group.
seq_id = seq_ids[0]
seq_data = seq_group_metadata.seq_data[seq_id]
prompt_tokens = seq_data.get_token_ids()
prompt_len = len(prompt_tokens)
prompt_lens.append(prompt_len)
input_tokens.extend(prompt_tokens)
# NOTE(woosuk): Here we assume that the first token in the prompt
# is always the first token in the sequence.
input_positions.extend(range(len(prompt_tokens)))
if seq_group_metadata.block_tables is None:
# During memory profiling, the block tables are not initialized
# yet. In this case, we just use a dummy slot mapping.
slot_mapping.extend([0] * prompt_len)
continue
# Compute the slot mapping.
block_table = seq_group_metadata.block_tables[seq_id]
for i in range(prompt_len):
block_number = block_table[i // self.block_size]
block_offset = i % self.block_size
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
# Add generation tokens.
max_context_len = 0
max_num_blocks_per_seq = 0
context_lens: List[int] = []
generation_block_tables: List[List[int]] = []
for seq_group_metadata in seq_group_metadata_list:
if seq_group_metadata.is_prompt:
continue
seq_ids = list(seq_group_metadata.seq_data.keys())
sampling_params = seq_group_metadata.sampling_params
seq_groups.append((seq_ids, sampling_params))
for seq_id in seq_ids:
seq_data = seq_group_metadata.seq_data[seq_id]
generation_token = seq_data.get_last_token_id()
input_tokens.append(generation_token)
context_len = seq_data.get_len()
position = context_len - 1
input_positions.append(position)
block_table = seq_group_metadata.block_tables[seq_id]
generation_block_tables.append(block_table)
max_context_len = max(max_context_len, context_len)
max_num_blocks_per_seq = max(
max_num_blocks_per_seq, len(block_table))
context_lens.append(context_len)
block_number = block_table[position // self.block_size]
block_offset = position % self.block_size
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
# Optimization: Pad the input length to be a multiple of 8.
# This is required for utilizing the Tensor Cores in NVIDIA GPUs.
input_tokens = _pad_to_alignment(input_tokens, multiple_of=8)
input_positions = _pad_to_alignment(input_positions, multiple_of=8)
# Convert to tensors.
tokens_tensor = torch.tensor(
input_tokens, dtype=torch.long, device='cuda')
positions_tensor = torch.tensor(
input_positions, dtype=torch.long, device='cuda')
slot_mapping_tensor = torch.tensor(
slot_mapping, dtype=torch.int, device='cuda')
context_lens_tensor = torch.tensor(
context_lens, dtype=torch.int, device='cuda')
padded_block_tables = [
_pad_to_max(block_table, max_num_blocks_per_seq)
for block_table in generation_block_tables]
block_tables_tensor = torch.tensor(
padded_block_tables, dtype=torch.int, device='cuda')
seq_data: Dict[int, SequenceData] = {}
for seq_group_metadata in seq_group_metadata_list:
seq_data.update(seq_group_metadata.seq_data)
input_metadata = InputMetadata(
seq_groups=seq_groups,
seq_data=seq_data,
prompt_lens=prompt_lens,
slot_mapping=slot_mapping_tensor,
context_lens=context_lens_tensor,
max_context_len=max_context_len,
block_tables=block_tables_tensor,
)
return tokens_tensor, positions_tensor, input_metadata
@torch.inference_mode()
def execute_stage(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
) -> Dict[int, SequenceOutputs]:
# Issue cache operations.
issued_cache_op = False
if blocks_to_swap_in:
self.cache_engine.swap_in(blocks_to_swap_in)
issued_cache_op = True
if blocks_to_swap_out:
self.cache_engine.swap_out(blocks_to_swap_out)
issued_cache_op = True
if blocks_to_copy:
self.cache_engine.copy(blocks_to_copy)
issued_cache_op = True
if issued_cache_op:
cache_events = self.cache_events
else:
cache_events = None
# If there is no input, we don't need to execute the model.
if not seq_group_metadata_list:
if cache_events is not None:
for event in cache_events:
event.wait()
return {}
# Prepare input tensors.
input_tokens, input_positions, input_metadata = self.prepare_inputs(
seq_group_metadata_list)
# Execute the model.
output = self.model(
input_ids=input_tokens,
positions=input_positions,
kv_caches=self.gpu_cache,
input_metadata=input_metadata,
cache_events=cache_events,
)
return output
def _pad_to_alignment(x: List[int], multiple_of: int) -> List[int]:
return x + [0] * ((-len(x)) % multiple_of)
def _pad_to_max(x: List[int], max_len: int) -> List[int]:
return x + [0] * (max_len - len(x))