vllm/tests/entrypoints/openai/test_vision_embedding.py
Cyrus Leung f690372b68
[Core] Update dtype detection and defaults (#14858)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-19 13:49:33 +08:00

94 lines
2.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import requests
from vllm.entrypoints.openai.protocol import EmbeddingResponse
from vllm.multimodal.utils import encode_image_base64, fetch_image
from ...utils import VLLM_PATH, RemoteOpenAIServer
MODEL_NAME = "TIGER-Lab/VLM2Vec-Full"
MAXIMUM_IMAGES = 2
vlm2vec_jinja_path = VLLM_PATH / "examples/template_vlm2vec.jinja"
assert vlm2vec_jinja_path.exists()
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
TEST_IMAGE_URLS = [
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
"https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
"https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
]
@pytest.fixture(scope="module")
def server():
args = [
"--task",
"embed",
"--max-model-len",
"2048",
"--max-num-seqs",
"5",
"--enforce-eager",
"--trust-remote-code",
"--limit-mm-per-prompt",
f"image={MAXIMUM_IMAGES}",
"--chat-template",
str(vlm2vec_jinja_path),
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.fixture(scope="session")
def base64_encoded_image() -> dict[str, str]:
return {
image_url: encode_image_base64(fetch_image(image_url))
for image_url in TEST_IMAGE_URLS
}
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_image_embedding(server: RemoteOpenAIServer, model_name: str,
image_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "text",
"text": "Represent the given image."
},
],
}]
response = requests.post(
server.url_for("v1/embeddings"),
json={
"model": model_name,
"messages": messages,
"encoding_format": "float"
},
)
response.raise_for_status()
embeddings = EmbeddingResponse.model_validate(response.json())
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 3072
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 763
assert embeddings.usage.total_tokens == 763