vllm/tests/entrypoints/openai/test_vision.py
Cyrus Leung f690372b68
[Core] Update dtype detection and defaults (#14858)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-19 13:49:33 +08:00

348 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import openai
import pytest
import pytest_asyncio
from vllm.multimodal.utils import encode_image_base64, fetch_image
from ...utils import RemoteOpenAIServer
MODEL_NAME = "microsoft/Phi-3.5-vision-instruct"
MAXIMUM_IMAGES = 2
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
TEST_IMAGE_URLS = [
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
"https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
"https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
]
@pytest.fixture(scope="module")
def server():
args = [
"--task",
"generate",
"--max-model-len",
"2048",
"--max-num-seqs",
"5",
"--enforce-eager",
"--trust-remote-code",
"--limit-mm-per-prompt",
f"image={MAXIMUM_IMAGES}",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.fixture(scope="session")
def base64_encoded_image() -> dict[str, str]:
return {
image_url: encode_image_base64(fetch_image(image_url))
for image_url in TEST_IMAGE_URLS
}
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_single_chat_session_image(client: openai.AsyncOpenAI,
model_name: str, image_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "text",
"text": "What's in this image?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
temperature=0.0,
top_logprobs=5)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=774, total_tokens=784)
message = choice.message
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_single_chat_session_image_beamsearch(client: openai.AsyncOpenAI,
model_name: str,
image_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "text",
"text": "What's in this image?"
},
],
}]
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
n=2,
max_completion_tokens=10,
logprobs=True,
top_logprobs=5,
extra_body=dict(use_beam_search=True))
assert len(chat_completion.choices) == 2
assert chat_completion.choices[
0].message.content != chat_completion.choices[1].message.content
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_single_chat_session_image_base64encoded(
client: openai.AsyncOpenAI, model_name: str, image_url: str,
base64_encoded_image: dict[str, str]):
messages = [{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url":
f"data:image/jpeg;base64,{base64_encoded_image[image_url]}"
}
},
{
"type": "text",
"text": "What's in this image?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
temperature=0.0,
top_logprobs=5)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=774, total_tokens=784)
message = choice.message
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_single_chat_session_image_base64encoded_beamsearch(
client: openai.AsyncOpenAI, model_name: str, image_url: str,
base64_encoded_image: dict[str, str]):
messages = [{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url":
f"data:image/jpeg;base64,{base64_encoded_image[image_url]}"
}
},
{
"type": "text",
"text": "What's in this image?"
},
],
}]
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
n=2,
max_completion_tokens=10,
extra_body=dict(use_beam_search=True))
assert len(chat_completion.choices) == 2
assert chat_completion.choices[
0].message.content != chat_completion.choices[1].message.content
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_chat_streaming_image(client: openai.AsyncOpenAI,
model_name: str, image_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "text",
"text": "What's in this image?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
output = chat_completion.choices[0].message.content
stop_reason = chat_completion.choices[0].finish_reason
# test streaming
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=True,
)
chunks: list[str] = []
finish_reason_count = 0
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
if delta.content:
chunks.append(delta.content)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == stop_reason
assert delta.content
assert "".join(chunks) == output
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize(
"image_urls",
[TEST_IMAGE_URLS[:i] for i in range(2, len(TEST_IMAGE_URLS))])
async def test_multi_image_input(client: openai.AsyncOpenAI, model_name: str,
image_urls: list[str]):
messages = [{
"role":
"user",
"content": [
*({
"type": "image_url",
"image_url": {
"url": image_url
}
} for image_url in image_urls),
{
"type": "text",
"text": "What's in this image?"
},
],
}]
if len(image_urls) > MAXIMUM_IMAGES:
with pytest.raises(openai.BadRequestError): # test multi-image input
await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
# the server should still work afterwards
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
completion = completion.choices[0].text
assert completion is not None and len(completion) >= 0
else:
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0