vllm/tests/entrypoints/openai/test_video.py
Cyrus Leung f690372b68
[Core] Update dtype detection and defaults (#14858)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-19 13:49:33 +08:00

347 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import openai
import pytest
import pytest_asyncio
from vllm.multimodal.utils import encode_video_base64, fetch_video
from ...utils import RemoteOpenAIServer
MODEL_NAME = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf"
MAXIMUM_VIDEOS = 4
TEST_VIDEO_URLS = [
"http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/BigBuckBunny.mp4",
"http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ElephantsDream.mp4",
"http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerBlazes.mp4",
"http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4",
]
@pytest.fixture(scope="module")
def server():
args = [
"--task",
"generate",
"--max-model-len",
"32768",
"--max-num-seqs",
"2",
"--enforce-eager",
"--trust-remote-code",
"--limit-mm-per-prompt",
f"video={MAXIMUM_VIDEOS}",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.fixture(scope="session")
def base64_encoded_video() -> dict[str, str]:
return {
video_url: encode_video_base64(fetch_video(video_url))
for video_url in TEST_VIDEO_URLS
}
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
async def test_single_chat_session_video(client: openai.AsyncOpenAI,
model_name: str, video_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "video_url",
"video_url": {
"url": video_url
}
},
{
"type": "text",
"text": "What's in this video?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
temperature=0.0,
top_logprobs=5)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=6299, total_tokens=6309)
message = choice.message
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
async def test_single_chat_session_video_beamsearch(client: openai.AsyncOpenAI,
model_name: str,
video_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "video_url",
"video_url": {
"url": video_url
}
},
{
"type": "text",
"text": "What's in this video?"
},
],
}]
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
n=2,
max_completion_tokens=10,
logprobs=True,
top_logprobs=5,
extra_body=dict(use_beam_search=True))
assert len(chat_completion.choices) == 2
assert chat_completion.choices[
0].message.content != chat_completion.choices[1].message.content
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
async def test_single_chat_session_video_base64encoded(
client: openai.AsyncOpenAI, model_name: str, video_url: str,
base64_encoded_video: dict[str, str]):
messages = [{
"role":
"user",
"content": [
{
"type": "video_url",
"video_url": {
"url":
f"data:video/jpeg;base64,{base64_encoded_video[video_url]}"
}
},
{
"type": "text",
"text": "What's in this video?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
temperature=0.0,
top_logprobs=5)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=6299, total_tokens=6309)
message = choice.message
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
async def test_single_chat_session_video_base64encoded_beamsearch(
client: openai.AsyncOpenAI, model_name: str, video_url: str,
base64_encoded_video: dict[str, str]):
messages = [{
"role":
"user",
"content": [
{
"type": "video_url",
"video_url": {
"url":
f"data:video/jpeg;base64,{base64_encoded_video[video_url]}"
}
},
{
"type": "text",
"text": "What's in this video?"
},
],
}]
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
n=2,
max_completion_tokens=10,
extra_body=dict(use_beam_search=True))
assert len(chat_completion.choices) == 2
assert chat_completion.choices[
0].message.content != chat_completion.choices[1].message.content
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
async def test_chat_streaming_video(client: openai.AsyncOpenAI,
model_name: str, video_url: str):
messages = [{
"role":
"user",
"content": [
{
"type": "video_url",
"video_url": {
"url": video_url
}
},
{
"type": "text",
"text": "What's in this video?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
output = chat_completion.choices[0].message.content
stop_reason = chat_completion.choices[0].finish_reason
# test streaming
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=True,
)
chunks: list[str] = []
finish_reason_count = 0
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
if delta.content:
chunks.append(delta.content)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == stop_reason
assert delta.content
assert "".join(chunks) == output
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize(
"video_urls",
[TEST_VIDEO_URLS[:i] for i in range(2, len(TEST_VIDEO_URLS))])
async def test_multi_video_input(client: openai.AsyncOpenAI, model_name: str,
video_urls: list[str]):
messages = [{
"role":
"user",
"content": [
*({
"type": "video_url",
"video_url": {
"url": video_url
}
} for video_url in video_urls),
{
"type": "text",
"text": "What's in this video?"
},
],
}]
if len(video_urls) > MAXIMUM_VIDEOS:
with pytest.raises(openai.BadRequestError): # test multi-video input
await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
# the server should still work afterwards
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
completion = completion.choices[0].text
assert completion is not None and len(completion) >= 0
else:
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0