vllm/vllm/config.py
2024-11-08 15:56:18 +00:00

2088 lines
92 KiB
Python

import enum
import json
from dataclasses import dataclass, field
from typing import (TYPE_CHECKING, Any, ClassVar, Dict, Final, List, Literal,
Mapping, Optional, Set, Tuple, Type, Union)
import torch
from transformers import PretrainedConfig
import vllm.envs as envs
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.model_executor.models import ModelRegistry
from vllm.platforms import current_platform
from vllm.tracing import is_otel_available, otel_import_error_traceback
from vllm.transformers_utils.config import (
ConfigFormat, get_config, get_hf_image_processor_config,
get_hf_text_config, get_pooling_config,
get_sentence_transformer_tokenizer_config, is_encoder_decoder, uses_mrope)
from vllm.utils import (GiB_bytes, cuda_device_count_stateless, get_cpu_memory,
print_warning_once)
if TYPE_CHECKING:
from ray.util.placement_group import PlacementGroup
from vllm.executor.executor_base import ExecutorBase
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.model_loader.loader import BaseModelLoader
from vllm.transformers_utils.tokenizer_group.base_tokenizer_group import (
BaseTokenizerGroup)
else:
QuantizationConfig = None
logger = init_logger(__name__)
_EMBEDDING_MODEL_MAX_NUM_BATCHED_TOKENS = 32768
_MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS = 5120
TaskOption = Literal["auto", "generate", "embedding"]
# "draft" is only used internally for speculative decoding
_Task = Literal["generate", "embedding", "draft"]
class ModelConfig:
"""Configuration for the model.
Args:
model: Name or path of the huggingface model to use.
It is also used as the content for `model_name` tag in metrics
output when `served_model_name` is not specified.
task: The task to use the model for. Each vLLM instance only supports
one task, even if the same model can be used for multiple tasks.
When the model only supports one task, "auto" can be used to select
it; otherwise, you must specify explicitly which task to use.
tokenizer: Name or path of the huggingface tokenizer to use.
tokenizer_mode: Tokenizer mode. "auto" will use the fast tokenizer if
available, "slow" will always use the slow tokenizer, and
"mistral" will always use the tokenizer from `mistral_common`.
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
downloading the model and tokenizer.
allowed_local_media_path: Allowing API requests to read local images or
videos from directories specified by the server file system.
This is a security risk. Should only be enabled in trusted
environments.
dtype: Data type for model weights and activations. The "auto" option
will use FP16 precision for FP32 and FP16 models, and BF16 precision
for BF16 models.
seed: Random seed for reproducibility.
revision: The specific model version to use. It can be a branch name,
a tag name, or a commit id. If unspecified, will use the default
version.
code_revision: The specific revision to use for the model code on
Hugging Face Hub. It can be a branch name, a tag name, or a
commit id. If unspecified, will use the default version.
rope_scaling: Dictionary containing the scaling configuration for the
RoPE embeddings. When using this flag, don't update
`max_position_embeddings` to the expected new maximum.
tokenizer_revision: The specific tokenizer version to use. It can be a
branch name, a tag name, or a commit id. If unspecified, will use
the default version.
max_model_len: Maximum length of a sequence (including prompt and
output). If None, will be derived from the model.
quantization: Quantization method that was used to quantize the model
weights. If None, we assume the model weights are not quantized.
quantization_param_path: Path to JSON file containing scaling factors.
Used to load KV cache scaling factors into the model when KV cache
type is FP8_E4M3 on ROCm (AMD GPU). In the future these will also
be used to load activation and weight scaling factors when the
model dtype is FP8_E4M3 on ROCm.
enforce_eager: Whether to enforce eager execution. If True, we will
disable CUDA graph and always execute the model in eager mode.
If False, we will use CUDA graph and eager execution in hybrid.
If None, the user did not specify, so default to False.
max_seq_len_to_capture: Maximum sequence len covered by CUDA graphs.
When a sequence has context length larger than this, we fall back
to eager mode. Additionally for encoder-decoder models, if the
sequence length of the encoder input is larger than this, we fall
back to the eager mode.
disable_sliding_window: Whether to disable sliding window. If True,
we will disable the sliding window functionality of the model.
If the model does not support sliding window, this argument is
ignored.
skip_tokenizer_init: If true, skip initialization of tokenizer and
detokenizer.
served_model_name: The model name used in metrics tag `model_name`,
matches the model name exposed via the APIs. If multiple model
names provided, the first name will be used. If not specified,
the model name will be the same as `model`.
limit_mm_per_prompt: Maximum number of data instances per modality
per prompt. Only applicable for multimodal models.
override_neuron_config: Initialize non default neuron config or
override default neuron config that are specific to Neuron devices,
this argument will be used to configure the neuron config that
can not be gathered from the vllm arguments.
config_format: The config format which shall be loaded.
Defaults to 'auto' which defaults to 'hf'.
mm_processor_kwargs: Arguments to be forwarded to the model's processor
for multi-modal data, e.g., image processor.
pooling_type: Used to configure the pooling method in the embedding
model.
pooling_norm: Used to determine whether to normalize the pooled
data in the embedding model.
pooling_softmax: Used to determine whether to softmax the pooled
data in the embedding model.
pooling_step_tag_id: When pooling_step_tag_id is not -1, it indicates
that the score corresponding to the pooling_step_tag_id in the
generated sentence should be returned. Otherwise, it returns
the scores for all tokens.
pooling_returned_token_ids: pooling_returned_token_ids represents a
list of indices for the vocabulary dimensions to be extracted,
such as the token IDs of good_token and bad_token in the
math-shepherd-mistral-7b-prm model.
"""
def __init__(
self,
model: str,
task: Union[TaskOption, _Task],
tokenizer: str,
tokenizer_mode: str,
trust_remote_code: bool,
dtype: Union[str, torch.dtype],
seed: int,
allowed_local_media_path: str = "",
revision: Optional[str] = None,
code_revision: Optional[str] = None,
rope_scaling: Optional[dict] = None,
rope_theta: Optional[float] = None,
tokenizer_revision: Optional[str] = None,
max_model_len: Optional[int] = None,
spec_target_max_model_len: Optional[int] = None,
quantization: Optional[str] = None,
quantization_param_path: Optional[str] = None,
enforce_eager: Optional[bool] = None,
max_seq_len_to_capture: Optional[int] = None,
max_logprobs: int = 20,
disable_sliding_window: bool = False,
skip_tokenizer_init: bool = False,
served_model_name: Optional[Union[str, List[str]]] = None,
limit_mm_per_prompt: Optional[Mapping[str, int]] = None,
use_async_output_proc: bool = True,
override_neuron_config: Optional[Dict[str, Any]] = None,
config_format: ConfigFormat = ConfigFormat.AUTO,
chat_template_text_format: str = "string",
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
pooling_type: Optional[str] = None,
pooling_norm: Optional[bool] = None,
pooling_softmax: Optional[bool] = None,
pooling_step_tag_id: Optional[int] = None,
pooling_returned_token_ids: Optional[List[int]] = None) -> None:
self.model = model
self.tokenizer = tokenizer
self.tokenizer_mode = tokenizer_mode
self.trust_remote_code = trust_remote_code
self.allowed_local_media_path = allowed_local_media_path
self.seed = seed
self.revision = revision
self.code_revision = code_revision
self.rope_scaling = rope_scaling
self.rope_theta = rope_theta
# The tokenizer version is consistent with the model version by default.
if tokenizer_revision is None:
self.tokenizer_revision = revision
else:
self.tokenizer_revision = tokenizer_revision
self.quantization = quantization
self.quantization_param_path = quantization_param_path
self.enforce_eager = enforce_eager
self.max_seq_len_to_capture = max_seq_len_to_capture
self.max_logprobs = max_logprobs
self.disable_sliding_window = disable_sliding_window
self.skip_tokenizer_init = skip_tokenizer_init
self.hf_config = get_config(self.model, trust_remote_code, revision,
code_revision, rope_scaling, rope_theta,
config_format)
self.hf_text_config = get_hf_text_config(self.hf_config)
self.encoder_config = self._get_encoder_config()
self.hf_image_processor_config = get_hf_image_processor_config(
self.model, revision)
self.dtype = _get_and_verify_dtype(self.hf_text_config, dtype)
self.use_async_output_proc = use_async_output_proc
self.chat_template_text_format = chat_template_text_format
self.mm_processor_kwargs = mm_processor_kwargs
# Set enforce_eager to False if the value is unset.
if self.enforce_eager is None:
self.enforce_eager = False
sliding_window = getattr(self.hf_text_config, "sliding_window", None)
has_interleaved_attention = (sliding_window is not None) and (
isinstance(sliding_window, list) or
(self.hf_text_config.model_type in ["gemma2"]))
if (not self.disable_sliding_window and has_interleaved_attention):
sliding_window_len_min = get_min_sliding_window(
self.hf_text_config.sliding_window)
print_warning_once(
f"{self.hf_text_config.model_type} has interleaved attention, "
"which is currently not supported by vLLM. Disabling sliding "
"window and capping the max length to the sliding window size "
f"({sliding_window_len_min}).")
self.disable_sliding_window = True
self.max_model_len = _get_and_verify_max_len(
hf_config=self.hf_text_config,
max_model_len=max_model_len,
disable_sliding_window=self.disable_sliding_window,
sliding_window_len=self.get_hf_config_sliding_window(),
spec_target_max_model_len=spec_target_max_model_len,
encoder_config=self.encoder_config)
self.served_model_name = get_served_model_name(model,
served_model_name)
self.multimodal_config = self._init_multimodal_config(
limit_mm_per_prompt)
if not self.skip_tokenizer_init:
self._verify_tokenizer_mode()
self.is_attention_free = self._init_attention_free()
self.has_inner_state = self._init_has_inner_state()
if current_platform.is_neuron():
self.override_neuron_config = override_neuron_config
else:
self.override_neuron_config = None
supported_tasks, task = self._resolve_task(task, self.hf_config)
self.supported_tasks = supported_tasks
self.task: Final = task
self.pooler_config = self._init_pooler_config(
pooling_type,
pooling_norm,
pooling_softmax,
pooling_step_tag_id,
pooling_returned_token_ids,
)
self._verify_quantization()
self._verify_cuda_graph()
self._verify_bnb_config()
def _init_multimodal_config(
self, limit_mm_per_prompt: Optional[Mapping[str, int]]
) -> Optional["MultiModalConfig"]:
architectures = getattr(self.hf_config, "architectures", [])
if ModelRegistry.is_multimodal_model(architectures):
return MultiModalConfig(limit_per_prompt=limit_mm_per_prompt or {})
if limit_mm_per_prompt:
raise ValueError("`limit_mm_per_prompt` is only supported for "
"multimodal models.")
return None
def _get_encoder_config(self):
return get_sentence_transformer_tokenizer_config(
self.model, self.revision)
def _init_pooler_config(
self,
pooling_type: Optional[str] = None,
pooling_norm: Optional[bool] = None,
pooling_softmax: Optional[bool] = None,
pooling_step_tag_id: Optional[int] = None,
pooling_returned_token_ids: Optional[List[int]] = None
) -> Optional["PoolerConfig"]:
if self.task == "embedding":
pooling_config = get_pooling_config(self.model, self.revision)
if pooling_config is not None:
# override if user does not
# specifies pooling_type and/or pooling_norm
if pooling_type is None:
pooling_type = pooling_config["pooling_type"]
if pooling_norm is None:
pooling_norm = pooling_config["normalize"]
return PoolerConfig(
pooling_type=pooling_type,
pooling_norm=pooling_norm,
pooling_softmax=pooling_softmax,
pooling_step_tag_id=pooling_step_tag_id,
pooling_returned_token_ids=pooling_returned_token_ids)
return None
def _init_attention_free(self) -> bool:
architectures = getattr(self.hf_config, "architectures", [])
return ModelRegistry.is_attention_free_model(architectures)
def _init_has_inner_state(self) -> bool:
architectures = getattr(self.hf_config, "architectures", [])
return ModelRegistry.model_has_inner_state(architectures)
def _verify_tokenizer_mode(self) -> None:
tokenizer_mode = self.tokenizer_mode.lower()
if tokenizer_mode not in ["auto", "slow", "mistral"]:
raise ValueError(
f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
"either 'auto', 'slow' or 'mistral'.")
self.tokenizer_mode = tokenizer_mode
def _resolve_task(
self,
task_option: Union[TaskOption, _Task],
hf_config: PretrainedConfig,
) -> Tuple[Set[_Task], _Task]:
if task_option == "draft":
return {"draft"}, "draft"
architectures = getattr(hf_config, "architectures", [])
task_support: Dict[_Task, bool] = {
# NOTE: Listed from highest to lowest priority,
# in case the model supports multiple of them
"generate": ModelRegistry.is_text_generation_model(architectures),
"embedding": ModelRegistry.is_embedding_model(architectures),
}
supported_tasks_lst: List[_Task] = [
task for task, is_supported in task_support.items() if is_supported
]
supported_tasks = set(supported_tasks_lst)
if task_option == "auto":
selected_task = next(iter(supported_tasks_lst))
if len(supported_tasks) > 1:
logger.info(
"This model supports multiple tasks: %s. "
"Defaulting to '%s'.", supported_tasks, selected_task)
else:
if task_option not in supported_tasks:
msg = (
f"This model does not support the '{task_option}' task. "
f"Supported tasks: {supported_tasks}")
raise ValueError(msg)
selected_task = task_option
return supported_tasks, selected_task
def _parse_quant_hf_config(self):
quant_cfg = getattr(self.hf_config, "quantization_config", None)
if quant_cfg is None:
# compressed-tensors uses a "compression_config" key
quant_cfg = getattr(self.hf_config, "compression_config", None)
return quant_cfg
def _verify_quantization(self) -> None:
supported_quantization = [*QUANTIZATION_METHODS]
rocm_supported_quantization = [
"awq", "gptq", "fp8", "compressed_tensors", "compressed-tensors",
"fbgemm_fp8"
]
optimized_quantization_methods = [
"fp8", "marlin", "modelopt", "gptq_marlin_24", "gptq_marlin",
"awq_marlin", "fbgemm_fp8", "compressed_tensors",
"compressed-tensors", "experts_int8"
]
tpu_supported_quantization = ["tpu_int8"]
neuron_supported_quantization = ["neuron_quant"]
if self.quantization is not None:
self.quantization = self.quantization.lower()
# Parse quantization method from the HF model config, if available.
quant_cfg = self._parse_quant_hf_config()
if quant_cfg is not None:
quant_method = quant_cfg.get("quant_method", "").lower()
# Detect which checkpoint is it
for _, method in QUANTIZATION_METHODS.items():
quantization_override = method.override_quantization_method(
quant_cfg, self.quantization)
if quantization_override:
quant_method = quantization_override
self.quantization = quantization_override
break
# Verify quantization configurations.
if self.quantization is None:
self.quantization = quant_method
elif self.quantization != quant_method:
raise ValueError(
"Quantization method specified in the model config "
f"({quant_method}) does not match the quantization "
f"method specified in the `quantization` argument "
f"({self.quantization}).")
if self.quantization is not None:
if self.quantization not in supported_quantization:
raise ValueError(
f"Unknown quantization method: {self.quantization}. Must "
f"be one of {supported_quantization}.")
if current_platform.is_rocm(
) and self.quantization not in rocm_supported_quantization:
raise ValueError(
f"{self.quantization} quantization is currently not "
f"supported in ROCm.")
if current_platform.is_tpu(
) and self.quantization not in tpu_supported_quantization:
raise ValueError(
f"{self.quantization} quantization is currently not "
f"supported in TPU Backend.")
if self.quantization not in optimized_quantization_methods:
logger.warning(
"%s quantization is not fully "
"optimized yet. The speed can be slower than "
"non-quantized models.", self.quantization)
if (self.quantization == "awq" and current_platform.is_rocm()
and not envs.VLLM_USE_TRITON_AWQ):
logger.warning(
"Using AWQ quantization with ROCm, but VLLM_USE_TRITON_AWQ"
" is not set, enabling VLLM_USE_TRITON_AWQ.")
envs.VLLM_USE_TRITON_AWQ = True
if current_platform.is_neuron(
) and self.quantization not in neuron_supported_quantization:
raise ValueError(
f"{self.quantization} quantization is currently not "
f"supported in Neuron Backend.")
def _verify_cuda_graph(self) -> None:
if self.max_seq_len_to_capture is None:
self.max_seq_len_to_capture = self.max_model_len
self.max_seq_len_to_capture = min(self.max_seq_len_to_capture,
self.max_model_len)
def _verify_bnb_config(self) -> None:
"""
The current version of bitsandbytes (0.44.0) with 8-bit models does not
yet support CUDA graph.
"""
is_bitsandbytes = self.quantization == "bitsandbytes"
has_quantization_config = (getattr(self.hf_config,
"quantization_config", None)
is not None)
is_8bit = (self.hf_config.quantization_config.get(
"load_in_8bit", False) if has_quantization_config else False)
if all([
is_bitsandbytes,
has_quantization_config,
is_8bit,
not self.enforce_eager,
]):
logger.warning(
"CUDA graph is not supported on BitAndBytes 8bit yet, "
"fallback to the eager mode.")
self.enforce_eager = True
def verify_async_output_proc(self, parallel_config, speculative_config,
device_config) -> None:
if not self.use_async_output_proc:
# Nothing to check
return
if parallel_config.pipeline_parallel_size > 1:
logger.warning("Async output processing can not be enabled "
"with pipeline parallel")
self.use_async_output_proc = False
return
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if device_config.device_type not in ("cuda", "tpu", "xpu", "hpu"):
logger.warning(
"Async output processing is only supported for CUDA, TPU, XPU "
"and HPU."
"Disabling it for other platforms.")
self.use_async_output_proc = False
return
if envs.VLLM_USE_RAY_SPMD_WORKER:
logger.warning(
"Async output processing can not be enabled with ray spmd")
self.use_async_output_proc = False
return
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if device_config.device_type == "cuda" and self.enforce_eager:
logger.warning(
"To see benefits of async output processing, enable CUDA "
"graph. Since, enforce-eager is enabled, async output "
"processor cannot be used")
self.use_async_output_proc = not self.enforce_eager
return
# Async postprocessor is not necessary with embedding mode
# since there is no token generation
if self.task == "embedding":
self.use_async_output_proc = False
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if speculative_config:
logger.warning("Async output processing is not supported with"
" speculative decoding currently.")
self.use_async_output_proc = False
def verify_with_parallel_config(
self,
parallel_config: "ParallelConfig",
) -> None:
total_num_attention_heads = getattr(self.hf_text_config,
"num_attention_heads", 0)
tensor_parallel_size = parallel_config.tensor_parallel_size
if total_num_attention_heads % tensor_parallel_size != 0:
raise ValueError(
f"Total number of attention heads ({total_num_attention_heads})"
" must be divisible by tensor parallel size "
f"({tensor_parallel_size}).")
pipeline_parallel_size = parallel_config.pipeline_parallel_size
if pipeline_parallel_size > 1:
architectures = getattr(self.hf_config, "architectures", [])
if not ModelRegistry.is_pp_supported_model(architectures):
raise NotImplementedError(
"Pipeline parallelism is not supported for this model. "
"Supported models implement the `SupportsPP` interface.")
if self.use_async_output_proc:
logger.warning("Async output processor is not supported with "
"pipeline parallelism currently. Disabling it.")
self.use_async_output_proc = False
def get_hf_config_sliding_window(
self) -> Union[Optional[int], List[Optional[int]]]:
"""Get the sliding window size, or None if disabled."""
# Some models, like Qwen2 and Qwen1.5, use `use_sliding_window` in
# addition to sliding window size. We check if that field is present
# and if it's False, return None.
if (hasattr(self.hf_text_config, "use_sliding_window")
and not self.hf_text_config.use_sliding_window):
return None
return getattr(self.hf_text_config, "sliding_window", None)
def get_sliding_window(self) -> Optional[Union[int, List[Optional[int]]]]:
"""Get the sliding window size, or None if disabled.
"""
# If user disables sliding window, return None.
if self.disable_sliding_window:
return None
# Otherwise get the value from the hf config.
return self.get_hf_config_sliding_window()
def get_vocab_size(self) -> int:
return self.hf_text_config.vocab_size
def get_hidden_size(self) -> int:
return self.hf_text_config.hidden_size
def get_head_size(self) -> int:
# TODO remove hard code
if hasattr(self.hf_text_config, "model_type"
) and self.hf_text_config.model_type == 'deepseek_v2':
# FlashAttention supports only head_size 32, 64, 128, 256,
# we need to pad head_size 192 to 256
return 256
if self.is_attention_free:
return 0
if hasattr(self.hf_text_config, "head_dim"):
return self.hf_text_config.head_dim
# FIXME(woosuk): This may not be true for all models.
return (self.hf_text_config.hidden_size //
self.hf_text_config.num_attention_heads)
def get_total_num_kv_heads(self) -> int:
"""Returns the total number of KV heads."""
# For GPTBigCode & Falcon:
# NOTE: for falcon, when new_decoder_architecture is True, the
# multi_query flag is ignored and we use n_head_kv for the number of
# KV heads.
falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
new_decoder_arch_falcon = (
self.hf_config.model_type in falcon_model_types
and getattr(self.hf_config, "new_decoder_architecture", False))
if not new_decoder_arch_falcon and getattr(self.hf_text_config,
"multi_query", False):
# Multi-query attention, only one KV head.
# Currently, tensor parallelism is not supported in this case.
return 1
# For DBRX and MPT
if self.hf_config.model_type == "mpt":
if "kv_n_heads" in self.hf_config.attn_config:
return self.hf_config.attn_config["kv_n_heads"]
return self.hf_config.num_attention_heads
if self.hf_config.model_type == "dbrx":
return getattr(self.hf_config.attn_config, "kv_n_heads",
self.hf_config.num_attention_heads)
if self.is_attention_free:
return 0
attributes = [
# For Falcon:
"n_head_kv",
"num_kv_heads",
# For LLaMA-2:
"num_key_value_heads",
# For ChatGLM:
"multi_query_group_num",
]
for attr in attributes:
num_kv_heads = getattr(self.hf_text_config, attr, None)
if num_kv_heads is not None:
return num_kv_heads
# For non-grouped-query attention models, the number of KV heads is
# equal to the number of attention heads.
return self.hf_text_config.num_attention_heads
def get_num_kv_heads(self, parallel_config: "ParallelConfig") -> int:
"""Returns the number of KV heads per GPU."""
total_num_kv_heads = self.get_total_num_kv_heads()
# If tensor parallelism is used, we divide the number of KV heads by
# the tensor parallel size. We will replicate the KV heads in the
# case where the number of KV heads is smaller than the tensor
# parallel size so each GPU has at least one KV head.
return max(1,
total_num_kv_heads // parallel_config.tensor_parallel_size)
def get_num_attention_heads(self,
parallel_config: "ParallelConfig") -> int:
num_heads = getattr(self.hf_text_config, "num_attention_heads", 0)
return num_heads // parallel_config.tensor_parallel_size
def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
from vllm.distributed.utils import get_pp_indices
total_num_hidden_layers = getattr(self.hf_text_config,
"num_hidden_layers", 0)
pp_rank = parallel_config.rank // parallel_config.tensor_parallel_size
pp_size = parallel_config.pipeline_parallel_size
start, end = get_pp_indices(total_num_hidden_layers, pp_rank, pp_size)
return end - start
def get_num_attention_layers(self,
parallel_config: "ParallelConfig") -> int:
if self.is_attention_free:
return 0
num_layers = self.get_num_layers(parallel_config)
# Transformers supports layers_block_type @property
layers = getattr(self.hf_config, "layers_block_type",
["attention"] * num_layers)
return len([t for t in layers if t == "attention"])
def get_multimodal_config(self) -> "MultiModalConfig":
"""
Get the multimodal configuration of the model.
Raises:
ValueError: If the model is not multimodal.
"""
if self.multimodal_config is None:
raise ValueError("The model is not multimodal.")
return self.multimodal_config
@property
def is_encoder_decoder(self) -> bool:
"""Extract the HF encoder/decoder model flag."""
return is_encoder_decoder(self.hf_config)
@property
def uses_mrope(self) -> bool:
return uses_mrope(self.hf_config)
@property
def is_multimodal_model(self) -> bool:
return self.multimodal_config is not None
class CacheConfig:
"""Configuration for the KV cache.
Args:
block_size: Size of a cache block in number of tokens.
gpu_memory_utilization: Fraction of GPU memory to use for the
vLLM execution.
swap_space: Size of the CPU swap space per GPU (in GiB).
cache_dtype: Data type for kv cache storage.
num_gpu_blocks_override: Number of GPU blocks to use. This overrides the
profiled num_gpu_blocks if specified. Does nothing if None.
"""
def __init__(
self,
block_size: int,
gpu_memory_utilization: float,
swap_space: float,
cache_dtype: str,
is_attention_free: bool = False,
num_gpu_blocks_override: Optional[int] = None,
sliding_window: Optional[int] = None,
enable_prefix_caching: bool = False,
cpu_offload_gb: float = 0,
) -> None:
self.block_size = block_size
self.gpu_memory_utilization = gpu_memory_utilization
self.swap_space_bytes = swap_space * GiB_bytes
self.num_gpu_blocks_override = num_gpu_blocks_override
self.cache_dtype = cache_dtype
self.is_attention_free = is_attention_free
self.sliding_window = sliding_window
self.enable_prefix_caching = enable_prefix_caching
self.cpu_offload_gb = cpu_offload_gb
self._verify_args()
self._verify_cache_dtype()
self._verify_prefix_caching()
# Will be set after profiling.
self.num_gpu_blocks: Optional[int] = None
self.num_cpu_blocks: Optional[int] = None
def metrics_info(self):
# convert cache_config to dict(key: str, value: str) for prometheus
# metrics info
return {key: str(value) for key, value in self.__dict__.items()}
def _verify_args(self) -> None:
if self.gpu_memory_utilization > 1.0:
raise ValueError(
"GPU memory utilization must be less than 1.0. Got "
f"{self.gpu_memory_utilization}.")
def _verify_cache_dtype(self) -> None:
if self.cache_dtype == "auto":
pass
elif self.cache_dtype in ("fp8", "fp8_e4m3", "fp8_e5m2"):
logger.info(
"Using fp8 data type to store kv cache. It reduces the GPU "
"memory footprint and boosts the performance. "
"Meanwhile, it may cause accuracy drop without a proper "
"scaling factor")
else:
raise ValueError(f"Unknown kv cache dtype: {self.cache_dtype}")
def _verify_prefix_caching(self) -> None:
if not self.enable_prefix_caching:
return
if self.sliding_window is not None:
raise NotImplementedError(
"Prefix caching is not supported with sliding window. "
"Run with --disable-sliding-window to use prefix caching.")
def verify_with_parallel_config(
self,
parallel_config: "ParallelConfig",
) -> None:
total_cpu_memory = get_cpu_memory()
# FIXME(woosuk): Here, it is assumed that the GPUs in a tensor parallel
# group are in the same node. However, the GPUs may span multiple nodes.
num_gpus_per_node = parallel_config.tensor_parallel_size
cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node
msg = (f"{cpu_memory_usage / GiB_bytes:.2f} GiB out of the "
f"{total_cpu_memory / GiB_bytes:.2f} GiB total CPU memory "
"is allocated for the swap space.")
if cpu_memory_usage > 0.7 * total_cpu_memory:
raise ValueError("Too large swap space. " + msg)
elif cpu_memory_usage > 0.4 * total_cpu_memory:
logger.warning("Possibly too large swap space. %s", msg)
@dataclass
class TokenizerPoolConfig:
"""Configuration for the tokenizer pool.
Args:
pool_size: Number of tokenizer workers in the pool.
pool_type: Type of the pool.
extra_config: Additional config for the pool.
The way the config will be used depends on the
pool type.
"""
pool_size: int
pool_type: Union[str, Type["BaseTokenizerGroup"]]
extra_config: dict
def __post_init__(self):
if self.pool_type not in ("ray", ) and not isinstance(
self.pool_type, type):
raise ValueError(f"Unknown pool type: {self.pool_type}")
if not isinstance(self.extra_config, dict):
raise ValueError("extra_config must be a dictionary.")
@classmethod
def create_config(
cls, tokenizer_pool_size: int,
tokenizer_pool_type: Union[str, Type["BaseTokenizerGroup"]],
tokenizer_pool_extra_config: Optional[Union[str, dict]]
) -> Optional["TokenizerPoolConfig"]:
"""Create a TokenizerPoolConfig from the given parameters.
If tokenizer_pool_size is 0, return None.
Args:
tokenizer_pool_size: Number of tokenizer workers in the pool.
tokenizer_pool_type: Type of the pool.
tokenizer_pool_extra_config: Additional config for the pool.
The way the config will be used depends on the
pool type. This can be a JSON string (will be parsed).
"""
if tokenizer_pool_size:
if isinstance(tokenizer_pool_extra_config, str):
tokenizer_pool_extra_config_parsed = json.loads(
tokenizer_pool_extra_config)
else:
tokenizer_pool_extra_config_parsed = (
tokenizer_pool_extra_config or {})
tokenizer_pool_config = cls(tokenizer_pool_size,
tokenizer_pool_type,
tokenizer_pool_extra_config_parsed)
else:
tokenizer_pool_config = None
return tokenizer_pool_config
class LoadFormat(str, enum.Enum):
AUTO = "auto"
PT = "pt"
SAFETENSORS = "safetensors"
NPCACHE = "npcache"
DUMMY = "dummy"
TENSORIZER = "tensorizer"
SHARDED_STATE = "sharded_state"
GGUF = "gguf"
BITSANDBYTES = "bitsandbytes"
MISTRAL = "mistral"
@dataclass
class LoadConfig:
"""
download_dir: Directory to download and load the weights, default to the
default cache directory of huggingface.
load_format: The format of the model weights to load:
"auto" will try to load the weights in the safetensors format and
fall back to the pytorch bin format if safetensors format is
not available.
"pt" will load the weights in the pytorch bin format.
"safetensors" will load the weights in the safetensors format.
"npcache" will load the weights in pytorch format and store
a numpy cache to speed up the loading.
"dummy" will initialize the weights with random values, which is
mainly for profiling.
"tensorizer" will use CoreWeave's tensorizer library for
fast weight loading.
"bitsandbytes" will load nf4 type weights.
ignore_patterns: The list of patterns to ignore when loading the model.
Default to "original/**/*" to avoid repeated loading of llama's
checkpoints.
"""
load_format: Union[str, LoadFormat, "BaseModelLoader"] = LoadFormat.AUTO
download_dir: Optional[str] = None
model_loader_extra_config: Optional[Union[str, dict]] = field(
default_factory=dict)
ignore_patterns: Optional[Union[List[str], str]] = None
def __post_init__(self):
model_loader_extra_config = self.model_loader_extra_config or {}
if isinstance(model_loader_extra_config, str):
self.model_loader_extra_config = json.loads(
model_loader_extra_config)
self._verify_load_format()
if self.ignore_patterns is not None and len(self.ignore_patterns) > 0:
logger.info(
"Ignoring the following patterns when downloading weights: %s",
self.ignore_patterns)
else:
self.ignore_patterns = ["original/**/*"]
def _verify_load_format(self) -> None:
if not isinstance(self.load_format, str):
return
load_format = self.load_format.lower()
self.load_format = LoadFormat(load_format)
rocm_not_supported_load_format: List[str] = []
if current_platform.is_rocm(
) and load_format in rocm_not_supported_load_format:
rocm_supported_load_format = [
f for f in LoadFormat.__members__
if (f not in rocm_not_supported_load_format)
]
raise ValueError(
f"load format '{load_format}' is not supported in ROCm. "
f"Supported load formats are "
f"{rocm_supported_load_format}")
class ParallelConfig:
"""Configuration for the distributed execution.
Args:
pipeline_parallel_size: Number of pipeline parallel groups.
tensor_parallel_size: Number of tensor parallel groups.
worker_use_ray: Deprecated, use distributed_executor_backend instead.
max_parallel_loading_workers: Maximum number of multiple batches
when load model sequentially. To avoid RAM OOM when using tensor
parallel and large models.
disable_custom_all_reduce: Disable the custom all-reduce kernel and
fall back to NCCL.
tokenizer_pool_config: Config for the tokenizer pool.
If None, will use synchronous tokenization.
ray_workers_use_nsight: Whether to profile Ray workers with nsight, see
https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.
placement_group: ray distributed model workers placement group.
distributed_executor_backend: Backend to use for distributed model
workers, either "ray" or "mp" (multiprocessing). If either
pipeline_parallel_size or tensor_parallel_size is greater than 1,
will default to "ray" if Ray is installed or "mp" otherwise.
"""
def __init__(
self,
pipeline_parallel_size: int,
tensor_parallel_size: int,
worker_use_ray: Optional[bool] = None,
max_parallel_loading_workers: Optional[int] = None,
disable_custom_all_reduce: bool = False,
tokenizer_pool_config: Optional[TokenizerPoolConfig] = None,
ray_workers_use_nsight: bool = False,
placement_group: Optional["PlacementGroup"] = None,
distributed_executor_backend: Optional[Union[
str, Type["ExecutorBase"]]] = None,
) -> None:
self.pipeline_parallel_size = pipeline_parallel_size
self.tensor_parallel_size = tensor_parallel_size
self.distributed_executor_backend = distributed_executor_backend
self.max_parallel_loading_workers = max_parallel_loading_workers
self.disable_custom_all_reduce = disable_custom_all_reduce
self.tokenizer_pool_config = tokenizer_pool_config
self.ray_workers_use_nsight = ray_workers_use_nsight
self.placement_group = placement_group
self.world_size = pipeline_parallel_size * self.tensor_parallel_size
if worker_use_ray:
if self.distributed_executor_backend is None:
self.distributed_executor_backend = "ray"
elif not self.use_ray:
raise ValueError(f"worker-use-ray can't be used with "
f"distributed executor backend "
f"'{self.distributed_executor_backend}'.")
if current_platform.is_tpu() and self.world_size > 1:
if self.distributed_executor_backend is None:
self.distributed_executor_backend = "ray"
if self.distributed_executor_backend != "ray":
raise ValueError(
"TPU backend only supports Ray for distributed inference.")
if current_platform.is_hpu() and self.world_size > 1:
if self.distributed_executor_backend is None:
self.distributed_executor_backend = "ray"
if self.distributed_executor_backend != "ray":
raise ValueError(
"HPU backend only supports Ray for distributed inference.")
if self.distributed_executor_backend is None and self.world_size > 1:
# We use multiprocessing by default if world_size fits on the
# current node and we aren't in a ray placement group.
from vllm.executor import ray_utils
backend = "mp"
ray_found = ray_utils.ray_is_available()
if (current_platform.is_cuda()
and cuda_device_count_stateless() < self.world_size):
if not ray_found:
raise ValueError("Unable to load Ray which is "
"required for multi-node inference, "
"please install Ray with `pip install "
"ray`.") from ray_utils.ray_import_err
backend = "ray"
elif ray_found:
if self.placement_group:
backend = "ray"
else:
from ray import is_initialized as ray_is_initialized
if ray_is_initialized():
from ray.util import get_current_placement_group
if get_current_placement_group():
backend = "ray"
self.distributed_executor_backend = backend
logger.info("Defaulting to use %s for distributed inference",
backend)
self._verify_args()
self.rank: int = 0
@property
def use_ray(self) -> bool:
return self.distributed_executor_backend == "ray" or (
isinstance(self.distributed_executor_backend, type)
and self.distributed_executor_backend.uses_ray)
def _verify_args(self) -> None:
# Lazy import to avoid circular import
from vllm.executor.executor_base import ExecutorBase
if self.distributed_executor_backend not in (
"ray", "mp", None) and not (isinstance(
self.distributed_executor_backend, type) and issubclass(
self.distributed_executor_backend, ExecutorBase)):
raise ValueError(
"Unrecognized distributed executor backend "
f"{self.distributed_executor_backend}. Supported "
"values are 'ray', 'mp' or custom ExecutorBase subclass.")
if self.use_ray:
from vllm.executor import ray_utils
ray_utils.assert_ray_available()
if current_platform.is_rocm():
self.disable_custom_all_reduce = True
logger.info(
"Disabled the custom all-reduce kernel because it is not "
"supported on AMD GPUs.")
if self.ray_workers_use_nsight and not self.use_ray:
raise ValueError("Unable to use nsight profiling unless workers "
"run with Ray.")
class SchedulerConfig:
"""Scheduler configuration.
Args:
task: The task to use the model for.
max_num_batched_tokens: Maximum number of tokens to be processed in
a single iteration.
max_num_seqs: Maximum number of sequences to be processed in a single
iteration.
max_model_len: Maximum length of a sequence (including prompt
and generated text).
num_lookahead_slots: The number of slots to allocate per sequence per
step, beyond the known token ids. This is used in speculative
decoding to store KV activations of tokens which may or may not be
accepted.
delay_factor: Apply a delay (of delay factor multiplied by previous
prompt latency) before scheduling next prompt.
enable_chunked_prefill: If True, prefill requests can be chunked based
on the remaining max_num_batched_tokens.
preemption_mode: Whether to perform preemption by swapping or
recomputation. If not specified, we determine the mode as follows:
We use recomputation by default since it incurs lower overhead than
swapping. However, when the sequence group has multiple sequences
(e.g., beam search), recomputation is not currently supported. In
such a case, we use swapping instead.
send_delta_data: Private API. If used, scheduler sends delta data to
workers instead of an entire data. It should be enabled only
when SPMD worker architecture is enabled. I.e.,
VLLM_USE_RAY_SPMD_WORKER=1
policy: The scheduling policy to use. "fcfs" (default) or "priority".
"""
def __init__(self,
task: _Task,
max_num_batched_tokens: Optional[int],
max_num_seqs: int,
max_model_len: int,
num_lookahead_slots: int = 0,
delay_factor: float = 0.0,
enable_chunked_prefill: bool = False,
is_multimodal_model: bool = False,
preemption_mode: Optional[str] = None,
num_scheduler_steps: int = 1,
multi_step_stream_outputs: bool = False,
send_delta_data: bool = False,
policy: str = "fcfs") -> None:
if max_num_batched_tokens is None:
if enable_chunked_prefill:
if num_scheduler_steps > 1:
# Multi-step Chunked-Prefill doesn't allow prompt-chunking
# for now. Have max_num_batched_tokens set to max_model_len
# so we don't reject sequences on account of a short
# max_num_batched_tokens.
max_num_batched_tokens = max(max_model_len, 2048)
else:
# It is the values that have the best balance between ITL
# and TTFT on A100. Note it is not optimized for throughput.
max_num_batched_tokens = 512
else:
# If max_model_len is too short, use 2048 as the default value
# for higher throughput.
max_num_batched_tokens = max(max_model_len, 2048)
if task == "embedding":
# For embedding, choose specific value for higher throughput
max_num_batched_tokens = max(
max_num_batched_tokens,
_EMBEDDING_MODEL_MAX_NUM_BATCHED_TOKENS,
)
if is_multimodal_model:
# The value needs to be at least the number of multimodal tokens
max_num_batched_tokens = max(
max_num_batched_tokens,
_MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS,
)
self.max_num_batched_tokens = max_num_batched_tokens
if enable_chunked_prefill:
logger.info(
"Chunked prefill is enabled with max_num_batched_tokens=%d.",
self.max_num_batched_tokens)
self.task: Final = task
self.max_num_seqs = max_num_seqs
self.max_model_len = max_model_len
self.num_lookahead_slots = num_lookahead_slots
self.delay_factor = delay_factor
self.chunked_prefill_enabled = enable_chunked_prefill
self.preemption_mode = preemption_mode
self.num_scheduler_steps = num_scheduler_steps
self.multi_step_stream_outputs = multi_step_stream_outputs
self.send_delta_data = send_delta_data
self.policy = policy
self._verify_args()
def _verify_args(self) -> None:
if (self.max_num_batched_tokens < self.max_model_len
and not self.chunked_prefill_enabled):
raise ValueError(
f"max_num_batched_tokens ({self.max_num_batched_tokens}) is "
f"smaller than max_model_len ({self.max_model_len}). "
"This effectively limits the maximum sequence length to "
"max_num_batched_tokens and makes vLLM reject longer "
"sequences. Please increase max_num_batched_tokens or "
"decrease max_model_len.")
if self.max_num_batched_tokens < self.max_num_seqs:
raise ValueError(
f"max_num_batched_tokens ({self.max_num_batched_tokens}) must "
"be greater than or equal to max_num_seqs "
f"({self.max_num_seqs}).")
if self.num_lookahead_slots < 0:
raise ValueError(
"num_lookahead_slots "
f"({self.num_lookahead_slots}) must be greater than or "
"equal to 0.")
if self.num_scheduler_steps < 1:
raise ValueError(
"num_scheduler_steps "
f"({self.num_scheduler_steps}) must be greater than or "
"equal to 1.")
@property
def is_multi_step(self) -> bool:
return self.num_scheduler_steps > 1
class DeviceConfig:
device: Optional[torch.device]
def __init__(self, device: str = "auto") -> None:
if device == "auto":
# Automated device type detection
if current_platform.is_cuda_alike():
self.device_type = "cuda"
elif current_platform.is_neuron():
self.device_type = "neuron"
elif current_platform.is_hpu():
self.device_type = "hpu"
elif current_platform.is_openvino():
self.device_type = "openvino"
elif current_platform.is_tpu():
self.device_type = "tpu"
elif current_platform.is_cpu():
self.device_type = "cpu"
elif current_platform.is_xpu():
self.device_type = "xpu"
else:
raise RuntimeError("Failed to infer device type")
else:
# Device type is assigned explicitly
self.device_type = device
# Some device types require processing inputs on CPU
if self.device_type in ["neuron", "openvino"]:
self.device = torch.device("cpu")
elif self.device_type in ["tpu"]:
self.device = None
else:
# Set device with device type
self.device = torch.device(self.device_type)
class SpeculativeConfig:
"""Configuration for speculative decoding.
The configuration is currently specialized to draft-model speculative
decoding with top-1 proposals.
"""
@staticmethod
def maybe_create_spec_config(
target_model_config: ModelConfig,
target_parallel_config: ParallelConfig,
target_dtype: str,
speculative_model: Optional[str],
speculative_model_quantization: Optional[str],
speculative_draft_tensor_parallel_size: Optional[int],
num_speculative_tokens: Optional[int],
speculative_disable_mqa_scorer: Optional[bool],
speculative_max_model_len: Optional[int],
enable_chunked_prefill: bool,
disable_log_stats: bool,
speculative_disable_by_batch_size: Optional[int],
ngram_prompt_lookup_max: Optional[int],
ngram_prompt_lookup_min: Optional[int],
draft_token_acceptance_method: str,
typical_acceptance_sampler_posterior_threshold: Optional[float],
typical_acceptance_sampler_posterior_alpha: Optional[float],
disable_logprobs: Optional[bool],
) -> Optional["SpeculativeConfig"]:
"""Create a SpeculativeConfig if possible, else return None.
This function attempts to create a SpeculativeConfig object based on the
provided parameters. If the necessary conditions are met, it returns an
instance of SpeculativeConfig. Otherwise, it returns None.
Args:
target_model_config (ModelConfig): The configuration of the target
model.
target_parallel_config (ParallelConfig): The parallel configuration
for the target model.
target_dtype (str): The data type used for the target model.
speculative_model (Optional[str]): The name of the speculative
model, if provided.
speculative_model_quantization (Optional[str]): Quantization method
that was used to quantize the speculative model weights. If
None, we assume the model weights are not quantized.
speculative_draft_tensor_parallel_size (Optional[int]): The degree
of the tensor parallelism for the draft model.
num_speculative_tokens (Optional[int]): The number of speculative
tokens, if provided. Will default to the number in the draft
model config if present, otherwise is required.
speculative_disable_mqa_scorer (Optional[bool]): Disable the MQA
scorer for the speculative model and fall back to batch
expansion for scoring.
speculative_max_model_len (Optional[int]): The maximum model len of
the speculative model. Used when testing the ability to skip
speculation for some sequences.
enable_chunked_prefill (bool): Whether vLLM is configured to use
chunked prefill or not. Used for raising an error since its not
yet compatible with spec decode.
speculative_disable_by_batch_size (Optional[int]): Disable
speculative decoding for new incoming requests when the number
of enqueue requests is larger than this value, if provided.
ngram_prompt_lookup_max (Optional[int]): Max size of ngram token
window, if provided.
ngram_prompt_lookup_min (Optional[int]): Min size of ngram token
window, if provided.
draft_token_acceptance_method (str): The method to use for
accepting draft tokens. This can take two possible
values 'rejection_sampler' and 'typical_acceptance_sampler'
for RejectionSampler and TypicalAcceptanceSampler
respectively.
typical_acceptance_sampler_posterior_threshold (Optional[float]):
A threshold value that sets a lower bound on the posterior
probability of a token in the target model for it to be
accepted. This threshold is used only when we use the
TypicalAcceptanceSampler for token acceptance.
typical_acceptance_sampler_posterior_alpha (Optional[float]):
A scaling factor for the entropy-based threshold in the
TypicalAcceptanceSampler.
disable_logprobs (Optional[bool]): If set to True, token log
probabilities are not returned during speculative decoding.
If set to False, token log probabilities are returned
according to the log probability settings in SamplingParams.
If not specified, it defaults to True.
Returns:
Optional["SpeculativeConfig"]: An instance of SpeculativeConfig if
the necessary conditions are met, else None.
"""
if speculative_model is None:
if num_speculative_tokens is not None:
raise ValueError("num_speculative_tokens was provided without "
"speculative_model.")
return None
if (speculative_disable_by_batch_size is not None
and speculative_disable_by_batch_size < 2):
raise ValueError("Expect the batch size threshold of disabling "
"speculative decoding is > 1, but got "
f"{speculative_disable_by_batch_size=}")
# TODO: The user should be able to specify revision/max model len
# for the draft model. It is not currently supported.
draft_revision = None
draft_code_revision = None
draft_quantization = speculative_model_quantization
if speculative_model == "[ngram]":
if ngram_prompt_lookup_min is None:
ngram_prompt_lookup_min = 1
if ngram_prompt_lookup_max is None or ngram_prompt_lookup_max < 1:
raise ValueError(f"{ngram_prompt_lookup_max=} must be > 0")
if ngram_prompt_lookup_min < 1:
raise ValueError(f"{ngram_prompt_lookup_min=} must be > 0")
if ngram_prompt_lookup_min > ngram_prompt_lookup_max:
raise ValueError(f"{ngram_prompt_lookup_min=} cannot be "
f"larger than {ngram_prompt_lookup_max=}")
# TODO: current we still need extract vocab_size from target model
# config, in future, we may try refactor it out, and set
# draft related config as None here.
draft_model_config = target_model_config
draft_parallel_config = target_parallel_config
else:
ngram_prompt_lookup_max = 0
ngram_prompt_lookup_min = 0
draft_model_config = ModelConfig(
model=speculative_model,
task="draft",
tokenizer=target_model_config.tokenizer,
tokenizer_mode=target_model_config.tokenizer_mode,
trust_remote_code=target_model_config.trust_remote_code,
allowed_local_media_path=target_model_config.
allowed_local_media_path,
dtype=target_model_config.dtype,
seed=target_model_config.seed,
revision=draft_revision,
code_revision=draft_code_revision,
tokenizer_revision=target_model_config.tokenizer_revision,
max_model_len=None,
spec_target_max_model_len=target_model_config.max_model_len,
quantization=draft_quantization,
enforce_eager=target_model_config.enforce_eager,
max_seq_len_to_capture=target_model_config.
max_seq_len_to_capture,
max_logprobs=target_model_config.max_logprobs,
)
draft_hf_config = draft_model_config.hf_config
if (num_speculative_tokens is not None
and hasattr(draft_hf_config, "num_lookahead_tokens")):
draft_hf_config.num_lookahead_tokens = num_speculative_tokens
n_predict = getattr(draft_hf_config, "n_predict", None)
if n_predict is not None:
if num_speculative_tokens is None:
# Default to max value defined in draft model config.
num_speculative_tokens = n_predict
elif num_speculative_tokens > n_predict:
# Verify provided value doesn't exceed the maximum
# supported by the draft model.
raise ValueError(
"This speculative model supports a maximum of "
f"num_speculative_tokens={n_predict}, but "
f"{num_speculative_tokens=} was provided.")
if enable_chunked_prefill and draft_hf_config.model_type in (
"medusa", "mlp_speculator", "eagle"):
raise ValueError(
"Chunked prefill and hidden-state based draft models are "
"not compatible.")
speculative_draft_tensor_parallel_size = \
SpeculativeConfig._verify_and_get_draft_model_tensor_parallel_size(
target_parallel_config,
speculative_draft_tensor_parallel_size,
draft_hf_config
)
if (enable_chunked_prefill and \
speculative_draft_tensor_parallel_size != 1):
# TODO - Investigate why the error reported in
# https://github.com/vllm-project/vllm/pull/9291#issuecomment-2463266258
# is happening and re-enable it.
raise ValueError(
"Chunked prefill and speculative decoding can be enabled "
"simultaneously only for draft models with tensor "
"parallel size 1.")
draft_model_config.max_model_len = (
SpeculativeConfig._maybe_override_draft_max_model_len(
speculative_max_model_len,
draft_model_config.max_model_len,
target_model_config.max_model_len,
))
draft_parallel_config = (
SpeculativeConfig.create_draft_parallel_config(
target_parallel_config,
speculative_draft_tensor_parallel_size, draft_hf_config))
if num_speculative_tokens is None:
raise ValueError(
"num_speculative_tokens must be provided with "
"speculative_model unless the draft model config contains an "
"n_predict parameter.")
if typical_acceptance_sampler_posterior_threshold is None:
typical_acceptance_sampler_posterior_threshold = 0.09
if typical_acceptance_sampler_posterior_alpha is None:
typical_acceptance_sampler_posterior_alpha = 0.3
if disable_logprobs is None:
disable_logprobs = True
return SpeculativeConfig(
draft_model_config,
draft_parallel_config,
num_speculative_tokens,
speculative_disable_mqa_scorer,
speculative_disable_by_batch_size,
ngram_prompt_lookup_max,
ngram_prompt_lookup_min,
draft_token_acceptance_method=draft_token_acceptance_method,
typical_acceptance_sampler_posterior_threshold=\
typical_acceptance_sampler_posterior_threshold,
typical_acceptance_sampler_posterior_alpha=\
typical_acceptance_sampler_posterior_alpha,
disable_logprobs=disable_logprobs,
disable_log_stats=disable_log_stats,
)
@staticmethod
def _maybe_override_draft_max_model_len(
speculative_max_model_len: Optional[int],
draft_max_model_len: int,
target_max_model_len: int,
) -> int:
"""Determine the max sequence len for the draft model. This is usually
the draft_max_model_len, but may be the target_max_model_len if it is
less than the draft_max_model_len, or may be speculative_max_model_len
if it is specified.
This is necessary so that sequences do not exceed the capacity of the
draft model or the target model.
speculative_max_model_len is mainly used for testing that sequences can
skip speculation.
"""
if speculative_max_model_len is not None:
if speculative_max_model_len > draft_max_model_len:
raise ValueError(f"{speculative_max_model_len=} cannot be "
f"larger than {draft_max_model_len=}")
if speculative_max_model_len > target_max_model_len:
raise ValueError(f"{speculative_max_model_len=} cannot be "
f"larger than {target_max_model_len=}")
return speculative_max_model_len
return min(
draft_max_model_len,
target_max_model_len,
)
@staticmethod
def _verify_and_get_draft_model_tensor_parallel_size(
target_parallel_config: ParallelConfig,
speculative_draft_tensor_parallel_size: Optional[int],
draft_hf_config: PretrainedConfig) -> int:
"""
Verifies and adjusts the tensor parallel size for a draft model
specified using speculative_draft_tensor_parallel_size.
"""
# If speculative_draft_tensor_parallel_size is unset then set it
# appropriately else verify that it is set correctly.
if speculative_draft_tensor_parallel_size is None:
if draft_hf_config.model_type == "mlp_speculator":
speculative_draft_tensor_parallel_size = 1
if target_parallel_config.tensor_parallel_size > 1:
logger.warning(
"MLPSpeculator cannot currently be run with tp>1; "
"setting speculative_draft_tensor_parallel_size=1")
else:
speculative_draft_tensor_parallel_size = \
target_parallel_config.tensor_parallel_size
elif speculative_draft_tensor_parallel_size not in (
1, target_parallel_config.tensor_parallel_size):
raise ValueError(
f"{speculative_draft_tensor_parallel_size=} cannot be "
f"other value than 1 or target model tensor_parallel_size")
return speculative_draft_tensor_parallel_size
@staticmethod
def create_draft_parallel_config(
target_parallel_config: ParallelConfig,
speculative_draft_tensor_parallel_size: int,
draft_hf_config: PretrainedConfig,
) -> ParallelConfig:
"""Create a parallel config for use by the draft worker.
This is mostly a copy of the target parallel config, except the tp_size.
"""
draft_parallel_config = ParallelConfig(
pipeline_parallel_size=target_parallel_config.
pipeline_parallel_size,
tensor_parallel_size=speculative_draft_tensor_parallel_size,
distributed_executor_backend=target_parallel_config.
distributed_executor_backend,
max_parallel_loading_workers=target_parallel_config.
max_parallel_loading_workers,
disable_custom_all_reduce=target_parallel_config.
disable_custom_all_reduce,
tokenizer_pool_config=target_parallel_config.tokenizer_pool_config,
ray_workers_use_nsight=target_parallel_config.
ray_workers_use_nsight,
placement_group=target_parallel_config.placement_group,
)
return draft_parallel_config
def __init__(
self,
draft_model_config: ModelConfig,
draft_parallel_config: ParallelConfig,
num_speculative_tokens: int,
speculative_disable_mqa_scorer: Optional[bool],
speculative_disable_by_batch_size: Optional[int],
ngram_prompt_lookup_max: Optional[int],
ngram_prompt_lookup_min: Optional[int],
draft_token_acceptance_method: str,
typical_acceptance_sampler_posterior_threshold: float,
typical_acceptance_sampler_posterior_alpha: float,
disable_logprobs: bool,
disable_log_stats: bool,
):
"""Create a SpeculativeConfig object.
Args:
draft_model_config: ModelConfig for the draft model.
draft_parallel_config: ParallelConfig for the draft model.
num_speculative_tokens: The number of tokens to sample from the
draft model before scoring with the target model.
speculative_disable_by_batch_size: Disable speculative
decoding for new incoming requests when the number of
enqueue requests is larger than this value.
ngram_prompt_lookup_max: Max size of ngram token window.
ngram_prompt_lookup_min: Min size of ngram token window.
draft_token_acceptance_method (str): The method to use for
accepting draft tokens. This can take two possible
values 'rejection_sampler' and 'typical_acceptance_sampler'
for RejectionSampler and TypicalAcceptanceSampler
respectively.
typical_acceptance_sampler_posterior_threshold (Optional[float]):
A threshold value that sets a lower bound on the posterior
probability of a token in the target model for it to be
accepted. This threshold is used only when we use the
TypicalAcceptanceSampler for token acceptance.
typical_acceptance_sampler_posterior_alpha (Optional[float]):
A scaling factor for the entropy-based threshold in the
TypicalAcceptanceSampler.
disable_logprobs: If set to True, token log probabilities will not
be returned even if requested by sampling parameters. This
reduces latency by skipping logprob calculation in proposal
sampling, target sampling, and after accepted tokens are
determined. If set to False, log probabilities will be
returned.
disable_log_stats: Whether to disable periodic printing of stage
times in speculative decoding.
"""
self.draft_model_config = draft_model_config
self.draft_parallel_config = draft_parallel_config
self.num_speculative_tokens = num_speculative_tokens
self.speculative_disable_mqa_scorer = speculative_disable_mqa_scorer
self.speculative_disable_by_batch_size = \
speculative_disable_by_batch_size
self.ngram_prompt_lookup_max = ngram_prompt_lookup_max or 0
self.ngram_prompt_lookup_min = ngram_prompt_lookup_min or 0
self.draft_token_acceptance_method = draft_token_acceptance_method
self.typical_acceptance_sampler_posterior_threshold = \
typical_acceptance_sampler_posterior_threshold
self.typical_acceptance_sampler_posterior_alpha = \
typical_acceptance_sampler_posterior_alpha
self.disable_logprobs = disable_logprobs
self.disable_log_stats = disable_log_stats
self._verify_args()
def _verify_args(self) -> None:
if self.num_speculative_tokens <= 0:
raise ValueError("Expected num_speculative_tokens to be greater "
f"than zero ({self.num_speculative_tokens}).")
if self.draft_model_config:
self.draft_model_config.verify_with_parallel_config(
self.draft_parallel_config)
# Validate and set draft token acceptance related settings.
if (self.draft_token_acceptance_method is None):
raise ValueError("draft_token_acceptance_method is not set. "
"Expected values are rejection_sampler or "
"typical_acceptance_sampler.")
if (self.draft_token_acceptance_method != 'rejection_sampler'
and self.draft_token_acceptance_method !=
'typical_acceptance_sampler'):
raise ValueError(
"Expected draft_token_acceptance_method to be either "
"rejection_sampler or typical_acceptance_sampler. Instead it "
f"is {self.draft_token_acceptance_method}")
if (self.typical_acceptance_sampler_posterior_threshold < 0
or self.typical_acceptance_sampler_posterior_alpha < 0):
raise ValueError(
"Expected typical_acceptance_sampler_posterior_threshold "
"and typical_acceptance_sampler_posterior_alpha to be > 0. "
"Instead found "
f"typical_acceptance_sampler_posterior_threshold = "
f"{self.typical_acceptance_sampler_posterior_threshold} and "
f"typical_acceptance_sampler_posterior_alpha = "
f"{self.typical_acceptance_sampler_posterior_alpha}")
@property
def num_lookahead_slots(self) -> int:
"""The number of additional slots the scheduler should allocate per
step, in addition to the slots allocated for each known token.
This is equal to the number of speculative tokens, as each speculative
token must be scored.
"""
return self.num_speculative_tokens
def __repr__(self) -> str:
if self.ngram_prompt_lookup_max > 0:
draft_model = "[ngram]"
else:
draft_model = self.draft_model_config.model
num_spec_tokens = self.num_speculative_tokens
return f"SpeculativeConfig({draft_model=}, {num_spec_tokens=})"
@dataclass
class LoRAConfig:
max_lora_rank: int
max_loras: int
fully_sharded_loras: bool = False
max_cpu_loras: Optional[int] = None
lora_dtype: Optional[Union[torch.dtype, str]] = None
lora_extra_vocab_size: int = 256
# This is a constant.
lora_vocab_padding_size: ClassVar[int] = 256
long_lora_scaling_factors: Optional[Tuple[float]] = None
def __post_init__(self):
# Setting the maximum rank to 256 should be able to satisfy the vast
# majority of applications.
possible_max_ranks = (8, 16, 32, 64, 128, 256)
possible_lora_extra_vocab_size = (0, 256, 512)
if self.max_lora_rank not in possible_max_ranks:
raise ValueError(
f"max_lora_rank ({self.max_lora_rank}) must be one of "
f"{possible_max_ranks}.")
if self.lora_extra_vocab_size not in possible_lora_extra_vocab_size:
raise ValueError(
f"lora_extra_vocab_size ({self.lora_extra_vocab_size}) "
f"must be one of {possible_lora_extra_vocab_size}.")
if self.max_loras < 1:
raise ValueError(f"max_loras ({self.max_loras}) must be >= 1.")
if self.max_cpu_loras is None:
self.max_cpu_loras = self.max_loras
elif self.max_cpu_loras < self.max_loras:
raise ValueError(
f"max_cpu_loras ({self.max_cpu_loras}) must be >= "
f"max_loras ({self.max_loras})")
def verify_with_model_config(self, model_config: ModelConfig):
if self.lora_dtype in (None, "auto"):
self.lora_dtype = model_config.dtype
elif isinstance(self.lora_dtype, str):
self.lora_dtype = getattr(torch, self.lora_dtype)
if model_config.quantization and model_config.quantization not in [
"awq", "gptq"
]:
# TODO support marlin
logger.warning("%s quantization is not tested with LoRA yet.",
model_config.quantization)
def verify_with_scheduler_config(self, scheduler_config: SchedulerConfig):
# Reminder: Please update docs/source/serving/compatibility_matrix.rst
# If the feature combo become valid
if scheduler_config.chunked_prefill_enabled:
raise ValueError("LoRA is not supported with chunked prefill yet.")
@dataclass
class PromptAdapterConfig:
max_prompt_adapters: int
max_prompt_adapter_token: int
max_cpu_prompt_adapters: Optional[int] = None
prompt_adapter_dtype: Optional[torch.dtype] = None
def __post_init__(self):
if self.max_prompt_adapters < 1:
raise ValueError(f"max_prompt_adapters "
f"({self.max_prompt_adapters}) must be >= 1.")
if self.max_prompt_adapter_token == 0:
raise ValueError("max_prompt_adapter_token must be set.")
if self.max_cpu_prompt_adapters is None:
self.max_cpu_prompt_adapters = self.max_prompt_adapters
def verify_with_model_config(self, model_config: ModelConfig):
if self.prompt_adapter_dtype in (None, "auto"):
self.prompt_adapter_dtype = model_config.dtype
elif isinstance(self.prompt_adapter_dtype, str):
self.prompt_adapter_dtype = getattr(torch,
self.prompt_adapter_dtype)
@dataclass
class MultiModalConfig:
"""Controls the behavior of multimodal models."""
limit_per_prompt: Mapping[str, int] = field(default_factory=dict)
"""
The maximum number of multi-modal input instances allowed per prompt
for each :class:`~vllm.multimodal.MultiModalPlugin`.
"""
# TODO: Add configs to init vision tower or not.
@dataclass
class PoolerConfig:
"""Controls the behavior of pooler in embedding model"""
pooling_type: Optional[str] = None
pooling_norm: Optional[bool] = None
pooling_softmax: Optional[bool] = None
pooling_step_tag_id: Optional[int] = None
pooling_returned_token_ids: Optional[List[int]] = None
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": torch.float16,
"float16": torch.float16,
"float": torch.float32,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
_ROCM_NOT_SUPPORTED_DTYPE: List[str] = [] #
def _get_and_verify_dtype(
config: PretrainedConfig,
dtype: Union[str, torch.dtype],
) -> torch.dtype:
# NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
# because config.torch_dtype can be None.
config_dtype = getattr(config, "torch_dtype", None)
if config_dtype is None:
config_dtype = torch.float32
if isinstance(dtype, str):
dtype = dtype.lower()
if dtype == "auto":
if config_dtype == torch.float32:
if config.model_type == "gemma2":
logger.info(
"For Gemma 2, we downcast float32 to bfloat16 instead "
"of float16 by default. Please specify `dtype` if you "
"want to use float16.")
torch_dtype = torch.bfloat16
else:
# Following the common practice, we use float16 for float32
# models.
torch_dtype = torch.float16
else:
torch_dtype = config_dtype
if current_platform.is_hpu() and config_dtype == torch.float16:
logger.info(
"For HPU, we cast models to bfloat16 instead of"
"using float16 by default. Please specify `dtype` if you "
"want to use float16.")
torch_dtype = torch.bfloat16
else:
if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
raise ValueError(f"Unknown dtype: {dtype}")
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
elif isinstance(dtype, torch.dtype):
torch_dtype = dtype
else:
raise ValueError(f"Unknown dtype: {dtype}")
# Verify the dtype.
if torch_dtype != config_dtype:
if torch_dtype == torch.float32:
# Upcasting to float32 is allowed.
logger.info("Upcasting %s to %s.", config_dtype, torch_dtype)
pass
elif config_dtype == torch.float32:
# Downcasting from float32 to float16 or bfloat16 is allowed.
logger.info("Downcasting %s to %s.", config_dtype, torch_dtype)
pass
else:
# Casting between float16 and bfloat16 is allowed with a warning.
logger.warning("Casting %s to %s.", config_dtype, torch_dtype)
return torch_dtype
def _get_and_verify_max_len(
hf_config: PretrainedConfig,
max_model_len: Optional[int],
disable_sliding_window: bool,
sliding_window_len: Optional[Union[int, List[Optional[int]]]],
spec_target_max_model_len: Optional[int] = None,
encoder_config: Optional[Any] = None,
) -> int:
"""Get and verify the model's maximum length."""
derived_max_model_len = float("inf")
possible_keys = [
# OPT
"max_position_embeddings",
# GPT-2
"n_positions",
# MPT
"max_seq_len",
# ChatGLM2
"seq_length",
# Command-R
"model_max_length",
# Others
"max_sequence_length",
"max_seq_length",
"seq_len",
]
# Choose the smallest "max_length" from the possible keys.
max_len_key = None
for key in possible_keys:
max_len = getattr(hf_config, key, None)
if max_len is not None:
max_len_key = key if max_len < derived_max_model_len \
else max_len_key
derived_max_model_len = min(derived_max_model_len, max_len)
# If sliding window is manually disabled, max_length should be less
# than the sliding window length in the model config.
if disable_sliding_window and sliding_window_len is not None:
sliding_window_len_min = get_min_sliding_window(sliding_window_len)
max_len_key = "sliding_window" \
if sliding_window_len_min < derived_max_model_len else max_len_key
derived_max_model_len = min(derived_max_model_len,
sliding_window_len_min)
# If none of the keys were found in the config, use a default and
# log a warning.
if derived_max_model_len == float("inf"):
if max_model_len is not None:
# If max_model_len is specified, we use it.
return max_model_len
if spec_target_max_model_len is not None:
# If this is a speculative draft model, we use the max model len
# from the target model.
return spec_target_max_model_len
default_max_len = 2048
logger.warning(
"The model's config.json does not contain any of the following "
"keys to determine the original maximum length of the model: "
"%s. Assuming the model's maximum length is %d.", possible_keys,
default_max_len)
derived_max_model_len = default_max_len
rope_scaling = getattr(hf_config, "rope_scaling", None)
if rope_scaling is not None:
# No need to consider "type" key because of patch_rope_scaling when
# loading HF config
rope_type = rope_scaling["rope_type"]
if rope_type not in ("su", "longrope", "llama3"):
if disable_sliding_window:
# TODO(robertgshaw): Find a model that supports rope_scaling
# with sliding window to see if this case should be allowed.
raise NotImplementedError(
"Disabling sliding window is not supported for models "
"with rope_scaling. Please raise an issue so we can "
"investigate.")
# NOTE: rope_type == "default" does not define factor
# https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/modeling_rope_utils.py
scaling_factor = rope_scaling.get("factor", 1.0)
if rope_type == "yarn":
derived_max_model_len = rope_scaling[
"original_max_position_embeddings"]
derived_max_model_len *= scaling_factor
if encoder_config and "max_seq_length" in encoder_config:
derived_max_model_len = encoder_config["max_seq_length"]
# If the user specified a max length, make sure it is smaller than the
# derived length from the HF model config.
if max_model_len is None:
max_model_len = int(derived_max_model_len)
elif max_model_len > derived_max_model_len:
# Some models might have a separate key for specifying model_max_length
# that will be bigger than derived_max_model_len. We compare user input
# with model_max_length and allow this override when it's smaller.
model_max_length = getattr(hf_config, "model_max_length", None)
if model_max_length is not None and max_model_len <= model_max_length:
if disable_sliding_window:
# TODO(robertgshaw): Find a model that has model_max_length
# with sliding window to see if this case should be allowed.
raise NotImplementedError(
"Disabling sliding window is not supported for models "
"model_max_length in the config. Please raise an issue "
"so we can investigate.")
else:
msg = (
f"User-specified max_model_len ({max_model_len}) is greater "
f"than the derived max_model_len ({max_len_key}="
f"{derived_max_model_len} or model_max_length="
f"{model_max_length} in model's config.json). This may lead "
"to incorrect model outputs or CUDA errors.")
if envs.VLLM_ALLOW_LONG_MAX_MODEL_LEN:
logger.warning(
"%s Make sure the value is correct and within the "
"model context size.", msg)
else:
raise ValueError(
f"{msg} To allow overriding this maximum, set "
"the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN=1")
return int(max_model_len)
def get_min_sliding_window(
sliding_window: Union[int, List[Optional[int]]]) -> int:
if isinstance(sliding_window, list):
return min(s for s in sliding_window if s is not None)
return sliding_window
def get_served_model_name(model: str,
served_model_name: Optional[Union[str, List[str]]]):
"""
If the input is a non-empty list, the first model_name in
`served_model_name` is taken.
If the input is a non-empty string, it is used directly.
For cases where the input is either an empty string or an
empty list, the fallback is to use `self.model`.
"""
if not served_model_name:
return model
if isinstance(served_model_name, list):
return served_model_name[0]
return served_model_name
@dataclass
class DecodingConfig:
"""Dataclass which contains the decoding strategy of the engine"""
# Which guided decoding algo to use. 'outlines' / 'lm-format-enforcer'
guided_decoding_backend: str = 'outlines'
def __post_init__(self):
valid_guided_backends = ['outlines', 'lm-format-enforcer']
backend = self.guided_decoding_backend
if backend not in valid_guided_backends:
raise ValueError(f"Invalid guided_decoding_backend '{backend},"
f"must be one of {valid_guided_backends}")
@dataclass
class ObservabilityConfig:
"""Configuration for observability."""
otlp_traces_endpoint: Optional[str] = None
# Collecting detailed timing information for each request can be expensive.
# If set, collects the model forward time for the request.
collect_model_forward_time: bool = False
# If set, collects the model execute time for the request.
collect_model_execute_time: bool = False
def __post_init__(self):
if not is_otel_available() and self.otlp_traces_endpoint is not None:
raise ValueError(
"OpenTelemetry is not available. Unable to configure "
"'otlp_traces_endpoint'. Ensure OpenTelemetry packages are "
f"installed. Original error:\n{otel_import_error_traceback}")
@dataclass
class VllmConfig:
"""Dataclass which contains all vllm-related configuration. This
simplifies passing around the distinct configurations in the codebase.
"""
model_config: ModelConfig
cache_config: CacheConfig
parallel_config: ParallelConfig
scheduler_config: SchedulerConfig
device_config: DeviceConfig
load_config: LoadConfig
lora_config: Optional[LoRAConfig] = None
speculative_config: Optional[SpeculativeConfig] = None
decoding_config: Optional[DecodingConfig] = None
observability_config: Optional[ObservabilityConfig] = None
prompt_adapter_config: Optional[PromptAdapterConfig] = None
quant_config: Optional[QuantizationConfig] = None
@staticmethod
def _get_quantization_config(
model_config: ModelConfig,
load_config: LoadConfig) -> Optional[QuantizationConfig]:
"""Get the quantization config."""
if model_config.quantization is not None:
from vllm.model_executor.model_loader.weight_utils import (
get_quant_config)
quant_config = get_quant_config(model_config, load_config)
capability_tuple = current_platform.get_device_capability()
if capability_tuple is not None:
capability = capability_tuple.to_int()
if capability < quant_config.get_min_capability():
raise ValueError(
f"The quantization method {model_config.quantization} "
"is not supported for the current GPU. Minimum "
f"capability: {quant_config.get_min_capability()}. "
f"Current capability: {capability}.")
supported_dtypes = quant_config.get_supported_act_dtypes()
if model_config.dtype not in supported_dtypes:
raise ValueError(
f"{model_config.dtype} is not supported for quantization "
f"method {model_config.quantization}. Supported dtypes: "
f"{supported_dtypes}")
return quant_config
return None
def __post_init__(self):
"""Verify configs are valid & consistent with each other.
"""
self.model_config.verify_async_output_proc(self.parallel_config,
self.speculative_config,
self.device_config)
self.model_config.verify_with_parallel_config(self.parallel_config)
self.cache_config.verify_with_parallel_config(self.parallel_config)
if self.lora_config:
self.lora_config.verify_with_model_config(self.model_config)
self.lora_config.verify_with_scheduler_config(
self.scheduler_config)
if self.prompt_adapter_config:
self.prompt_adapter_config.verify_with_model_config(
self.model_config)
if self.quant_config is None and \
self.model_config is not None and self.load_config is not None:
self.quant_config = VllmConfig._get_quantization_config(
self.model_config, self.load_config)