Cyrus Leung eed11ebee9
[VLM] Merged multi-modal processors for LLaVA-NeXT-Video and LLaVA-OneVision (#11717)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-01-04 11:40:53 +00:00

60 lines
2.1 KiB
Python

"""Tests for phi3v's multimodal preprocessing kwargs."""
import pytest
from transformers import AutoTokenizer
from vllm.inputs import InputProcessingContext
from vllm.model_executor.models.phi3v import _IMAGE_TOKEN_ID
from .....conftest import _ImageAssets
from ....utils import build_model_context
# Wrap lazy imports to avoid initializing CUDA during test collection
@pytest.fixture()
def processor_for_phi3v():
from vllm.model_executor.models.phi3v import Phi3VMultiModalProcessor
return Phi3VMultiModalProcessor
@pytest.mark.parametrize("model_id", ["microsoft/Phi-3.5-vision-instruct"])
# yapf: disable
@pytest.mark.parametrize(
("mm_processor_kwargs", "expected_toks_per_img"),
[
({"num_crops": 4}, 757),
({"num_crops": 16}, 1921),
# the default num_crops of phi-3.5-vision is 4
({}, 757),
])
# yapf: enable
@pytest.mark.parametrize("num_imgs", [1, 2])
def test_processor_override(
processor_for_phi3v,
image_assets: _ImageAssets,
model_id: str,
mm_processor_kwargs: dict[str, int],
expected_toks_per_img: int,
num_imgs: int,
):
"""Ensure input_processor_for_phi3v handles num_crops properly."""
ctx = build_model_context(
model_name=model_id,
tokenizer_name=model_id,
trust_remote_code=True,
limit_mm_per_prompt={"image": num_imgs},
)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
ctx = InputProcessingContext(ctx.model_config, tokenizer)
# Build the image str / prompt based on the number of images we pass
img_str = "".join([f"<|image_{idx}|>\n" for idx in range(1, num_imgs + 1)])
prompt = f"<|user|>\n{img_str}<|end|>\n<|assistant|>\n"
mm_data = {"image": [image_assets[0].pil_image] * num_imgs}
processor = processor_for_phi3v(ctx)
processed_inputs = processor.apply(prompt, mm_data, mm_processor_kwargs)
# Ensure we have the right number of placeholders per num_crops size
img_tok_count = processed_inputs["prompt_token_ids"].count(_IMAGE_TOKEN_ID)
assert img_tok_count == expected_toks_per_img * num_imgs