vllm/tests/entrypoints/test_openai_server.py
jvmncs 8f36444c4f
multi-LoRA as extra models in OpenAI server (#2775)
how to serve the loras (mimicking the [multilora inference example](https://github.com/vllm-project/vllm/blob/main/examples/multilora_inference.py)):
```terminal
$ export LORA_PATH=~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/
$ python -m vllm.entrypoints.api_server \
 --model meta-llama/Llama-2-7b-hf \
 --enable-lora \
 --lora-modules sql-lora=$LORA_PATH sql-lora2=$LORA_PATH
```
the above server will list 3 separate values if the user queries `/models`: one for the base served model, and one each for the specified lora modules. in this case sql-lora and sql-lora2 point to the same underlying lora, but this need not be the case. lora config values take the same values they do in EngineArgs

no work has been done here to scope client permissions to specific models
2024-02-17 12:00:48 -08:00

314 lines
9.5 KiB
Python

import os
import subprocess
import time
import sys
import pytest
import requests
import ray # using Ray for overall ease of process management, parallel requests, and debugging.
import openai # use the official client for correctness check
from huggingface_hub import snapshot_download # downloading lora to test lora requests
MAX_SERVER_START_WAIT_S = 600 # wait for server to start for 60 seconds
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" # any model with a chat template should work here
LORA_NAME = "typeof/zephyr-7b-beta-lora" # technically this needs Mistral-7B-v0.1 as base, but we're not testing generation quality here
pytestmark = pytest.mark.asyncio
@ray.remote(num_gpus=1)
class ServerRunner:
def __init__(self, args):
env = os.environ.copy()
env["PYTHONUNBUFFERED"] = "1"
self.proc = subprocess.Popen(
["python3", "-m", "vllm.entrypoints.openai.api_server"] + args,
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
)
self._wait_for_server()
def ready(self):
return True
def _wait_for_server(self):
# run health check
start = time.time()
while True:
try:
if requests.get(
"http://localhost:8000/health").status_code == 200:
break
except Exception as err:
if self.proc.poll() is not None:
raise RuntimeError("Server exited unexpectedly.") from err
time.sleep(0.5)
if time.time() - start > MAX_SERVER_START_WAIT_S:
raise RuntimeError(
"Server failed to start in time.") from err
def __del__(self):
if hasattr(self, "proc"):
self.proc.terminate()
@pytest.fixture(scope="session")
def zephyr_lora_files():
return snapshot_download(repo_id=LORA_NAME)
@pytest.fixture(scope="session")
def server(zephyr_lora_files):
ray.init()
server_runner = ServerRunner.remote([
"--model",
MODEL_NAME,
"--dtype",
"bfloat16", # use half precision for speed and memory savings in CI environment
"--max-model-len",
"8192",
"--enforce-eager",
# lora config below
"--enable-lora",
"--lora-modules",
f"zephyr-lora={zephyr_lora_files}",
f"zephyr-lora2={zephyr_lora_files}",
"--max-lora-rank",
"64",
"--max-cpu-loras",
"2",
"--max-num-seqs",
"128"
])
ray.get(server_runner.ready.remote())
yield server_runner
ray.shutdown()
@pytest.fixture(scope="session")
def client():
client = openai.AsyncOpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123",
)
yield client
async def test_check_models(server, client: openai.AsyncOpenAI):
models = await client.models.list()
models = models.data
served_model = models[0]
lora_models = models[1:]
assert served_model.id == MODEL_NAME
assert all(model.root == MODEL_NAME for model in models)
assert lora_models[0].id == "zephyr-lora"
assert lora_models[1].id == "zephyr-lora2"
@pytest.mark.parametrize(
# first test base model, then test loras
"model_name",
[MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_single_completion(server, client: openai.AsyncOpenAI,
model_name: str):
completion = await client.completions.create(model=model_name,
prompt="Hello, my name is",
max_tokens=5,
temperature=0.0)
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 1
assert completion.choices[0].text is not None and len(
completion.choices[0].text) >= 5
assert completion.choices[0].finish_reason == "length"
assert completion.usage == openai.types.CompletionUsage(
completion_tokens=5, prompt_tokens=6, total_tokens=11)
# test using token IDs
completion = await client.completions.create(
model=MODEL_NAME,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
assert completion.choices[0].text is not None and len(
completion.choices[0].text) >= 5
@pytest.mark.parametrize(
# just test 1 lora hereafter
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_single_chat_session(server, client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
)
assert chat_completion.id is not None
assert chat_completion.choices is not None and len(
chat_completion.choices) == 1
assert chat_completion.choices[0].message is not None
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.parametrize(
# just test 1 lora hereafter
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_completion_streaming(server, client: openai.AsyncOpenAI,
model_name: str):
prompt = "What is an LLM?"
single_completion = await client.completions.create(
model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
)
single_output = single_completion.choices[0].text
single_usage = single_completion.usage
stream = await client.completions.create(
model=model_name,
prompt=prompt,
max_tokens=5,
temperature=0.0,
stream=True,
)
chunks = []
async for chunk in stream:
chunks.append(chunk.choices[0].text)
assert chunk.choices[0].finish_reason == "length"
assert chunk.usage == single_usage
assert "".join(chunks) == single_output
@pytest.mark.parametrize(
# just test 1 lora hereafter
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_chat_streaming(server, client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
)
output = chat_completion.choices[0].message.content
stop_reason = chat_completion.choices[0].finish_reason
# test streaming
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=True,
)
chunks = []
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
if delta.content:
chunks.append(delta.content)
assert chunk.choices[0].finish_reason == stop_reason
assert "".join(chunks) == output
@pytest.mark.parametrize(
# just test 1 lora hereafter
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_batch_completions(server, client: openai.AsyncOpenAI,
model_name: str):
# test simple list
batch = await client.completions.create(
model=model_name,
prompt=["Hello, my name is", "Hello, my name is"],
max_tokens=5,
temperature=0.0,
)
assert len(batch.choices) == 2
assert batch.choices[0].text == batch.choices[1].text
# test n = 2
batch = await client.completions.create(
model=model_name,
prompt=["Hello, my name is", "Hello, my name is"],
n=2,
max_tokens=5,
temperature=0.0,
extra_body=dict(
# NOTE: this has to be true for n > 1 in vLLM, but not necessary for official client.
use_beam_search=True),
)
assert len(batch.choices) == 4
assert batch.choices[0].text != batch.choices[
1].text, "beam search should be different"
assert batch.choices[0].text == batch.choices[
2].text, "two copies of the same prompt should be the same"
assert batch.choices[1].text == batch.choices[
3].text, "two copies of the same prompt should be the same"
# test streaming
batch = await client.completions.create(
model=model_name,
prompt=["Hello, my name is", "Hello, my name is"],
max_tokens=5,
temperature=0.0,
stream=True,
)
texts = [""] * 2
async for chunk in batch:
assert len(chunk.choices) == 1
choice = chunk.choices[0]
texts[choice.index] += choice.text
assert texts[0] == texts[1]
if __name__ == "__main__":
pytest.main([__file__])