134 lines
4.5 KiB
Python
134 lines
4.5 KiB
Python
"""Code inside this file can safely assume cuda platform, e.g. importing
|
|
pynvml. However, it should not initialize cuda context.
|
|
"""
|
|
|
|
import os
|
|
from functools import lru_cache, wraps
|
|
from typing import Callable, List, Tuple, TypeVar
|
|
|
|
import pynvml
|
|
from typing_extensions import ParamSpec
|
|
|
|
from vllm.logger import init_logger
|
|
|
|
from .interface import Platform, PlatformEnum
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
_P = ParamSpec("_P")
|
|
_R = TypeVar("_R")
|
|
|
|
if pynvml.__file__.endswith("__init__.py"):
|
|
logger.warning(
|
|
"You are using a deprecated `pynvml` package. Please install"
|
|
" `nvidia-ml-py` instead, and make sure to uninstall `pynvml`."
|
|
" When both of them are installed, `pynvml` will take precedence"
|
|
" and cause errors. See https://pypi.org/project/pynvml "
|
|
"for more information.")
|
|
|
|
# NVML utils
|
|
# Note that NVML is not affected by `CUDA_VISIBLE_DEVICES`,
|
|
# all the related functions work on real physical device ids.
|
|
# the major benefit of using NVML is that it will not initialize CUDA
|
|
|
|
|
|
def with_nvml_context(fn: Callable[_P, _R]) -> Callable[_P, _R]:
|
|
|
|
@wraps(fn)
|
|
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R:
|
|
pynvml.nvmlInit()
|
|
try:
|
|
return fn(*args, **kwargs)
|
|
finally:
|
|
pynvml.nvmlShutdown()
|
|
|
|
return wrapper
|
|
|
|
|
|
@lru_cache(maxsize=8)
|
|
@with_nvml_context
|
|
def get_physical_device_capability(device_id: int = 0) -> Tuple[int, int]:
|
|
handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
|
|
return pynvml.nvmlDeviceGetCudaComputeCapability(handle)
|
|
|
|
|
|
@lru_cache(maxsize=8)
|
|
@with_nvml_context
|
|
def get_physical_device_name(device_id: int = 0) -> str:
|
|
handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
|
|
return pynvml.nvmlDeviceGetName(handle)
|
|
|
|
|
|
@with_nvml_context
|
|
def warn_if_different_devices():
|
|
device_ids: int = pynvml.nvmlDeviceGetCount()
|
|
if device_ids > 1:
|
|
device_names = [get_physical_device_name(i) for i in range(device_ids)]
|
|
if len(set(device_names)) > 1 and os.environ.get(
|
|
"CUDA_DEVICE_ORDER") != "PCI_BUS_ID":
|
|
logger.warning(
|
|
"Detected different devices in the system: \n%s\nPlease"
|
|
" make sure to set `CUDA_DEVICE_ORDER=PCI_BUS_ID` to "
|
|
"avoid unexpected behavior.", "\n".join(device_names))
|
|
|
|
|
|
try:
|
|
from sphinx.ext.autodoc.mock import _MockModule
|
|
|
|
if not isinstance(pynvml, _MockModule):
|
|
warn_if_different_devices()
|
|
except ModuleNotFoundError:
|
|
warn_if_different_devices()
|
|
|
|
|
|
def device_id_to_physical_device_id(device_id: int) -> int:
|
|
if "CUDA_VISIBLE_DEVICES" in os.environ:
|
|
device_ids = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
|
|
if device_ids == [""]:
|
|
raise RuntimeError("CUDA_VISIBLE_DEVICES is set to empty string,"
|
|
" which means GPU support is disabled.")
|
|
physical_device_id = device_ids[device_id]
|
|
return int(physical_device_id)
|
|
else:
|
|
return device_id
|
|
|
|
|
|
class CudaPlatform(Platform):
|
|
_enum = PlatformEnum.CUDA
|
|
|
|
@staticmethod
|
|
def get_device_capability(device_id: int = 0) -> Tuple[int, int]:
|
|
physical_device_id = device_id_to_physical_device_id(device_id)
|
|
return get_physical_device_capability(physical_device_id)
|
|
|
|
@staticmethod
|
|
def get_device_name(device_id: int = 0) -> str:
|
|
physical_device_id = device_id_to_physical_device_id(device_id)
|
|
return get_physical_device_name(physical_device_id)
|
|
|
|
@staticmethod
|
|
@with_nvml_context
|
|
def is_full_nvlink(physical_device_ids: List[int]) -> bool:
|
|
"""
|
|
query if the set of gpus are fully connected by nvlink (1 hop)
|
|
"""
|
|
handles = [
|
|
pynvml.nvmlDeviceGetHandleByIndex(i) for i in physical_device_ids
|
|
]
|
|
for i, handle in enumerate(handles):
|
|
for j, peer_handle in enumerate(handles):
|
|
if i < j:
|
|
try:
|
|
p2p_status = pynvml.nvmlDeviceGetP2PStatus(
|
|
handle, peer_handle,
|
|
pynvml.NVML_P2P_CAPS_INDEX_NVLINK)
|
|
if p2p_status != pynvml.NVML_P2P_STATUS_OK:
|
|
return False
|
|
except pynvml.NVMLError as error:
|
|
logger.error(
|
|
"NVLink detection failed. This is normal if your"
|
|
" machine has no NVLink equipped.",
|
|
exc_info=error)
|
|
return False
|
|
return True
|