
Signed-off-by: Roger Wang <ywang@roblox.com> Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk> Signed-off-by: Isotr0py <2037008807@qq.com> Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk> Co-authored-by: Isotr0py <2037008807@qq.com>
529 lines
20 KiB
Python
529 lines
20 KiB
Python
# Adapted from https://github.com/fixie-ai/ultravox/blob/ecd58c4041030bae2ad15aa6bcf04ab43199ea02/ultravox/model/ultravox_model.py
|
|
"""PyTorch Ultravox model."""
|
|
|
|
import math
|
|
from functools import cached_property, lru_cache
|
|
from typing import (Iterable, List, Literal, Mapping, Optional, Set, Tuple,
|
|
TypedDict, Union)
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from transformers import BatchFeature, ProcessorMixin
|
|
from transformers.models.whisper import WhisperFeatureExtractor
|
|
from transformers.models.whisper.modeling_whisper import WhisperEncoder
|
|
|
|
from vllm.attention import AttentionMetadata
|
|
from vllm.config import VllmConfig
|
|
from vllm.inputs import InputContext
|
|
from vllm.model_executor.layers.activation import SiluAndMul, get_act_fn
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
from vllm.model_executor.model_loader.loader import DefaultModelLoader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
|
|
NestedTensors)
|
|
from vllm.multimodal.parse import MultiModalDataParser
|
|
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
|
MultiModalDataItems, ProcessorInputs,
|
|
PromptReplacement)
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs.ultravox import UltravoxConfig
|
|
from vllm.utils import is_list_of
|
|
|
|
from .interfaces import SupportsMultiModal, SupportsPP
|
|
from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
|
|
init_vllm_registered_model, maybe_prefix,
|
|
merge_multimodal_embeddings_from_map)
|
|
|
|
_AUDIO_TOKENS_PER_SECOND = 6.25
|
|
|
|
|
|
class UltravoxAudioFeatureInputs(TypedDict):
|
|
type: Literal["audio_features"]
|
|
data: NestedTensors
|
|
"""Shape: `(batch_size, num_audios, 80, M)`"""
|
|
|
|
|
|
class UltravoxAudioEmbeddingInputs(TypedDict):
|
|
type: Literal["audio_embeds"]
|
|
data: NestedTensors
|
|
"""Shape: `(batch_size, num_audios, audio_feature_size, hidden_size)`"""
|
|
|
|
|
|
UltravoxAudioInputs = Union[UltravoxAudioFeatureInputs,
|
|
UltravoxAudioEmbeddingInputs]
|
|
|
|
|
|
@lru_cache
|
|
def cached_feature_extractor(model_id: str) -> WhisperFeatureExtractor:
|
|
return WhisperFeatureExtractor.from_pretrained(model_id)
|
|
|
|
|
|
def whisper_feature_extractor(ctx: InputContext) -> WhisperFeatureExtractor:
|
|
hf_config = ctx.get_hf_config(UltravoxConfig)
|
|
return cached_feature_extractor(hf_config.audio_model_id)
|
|
|
|
|
|
def get_ultravox_max_audio_tokens(ctx: InputContext):
|
|
feature_extractor = whisper_feature_extractor(ctx)
|
|
return math.ceil(feature_extractor.chunk_length * _AUDIO_TOKENS_PER_SECOND)
|
|
|
|
|
|
class UltravoxMultiModalProcessor(BaseMultiModalProcessor):
|
|
|
|
def _get_hf_processor(
|
|
self,
|
|
*,
|
|
# Ignored in initialization
|
|
sampling_rate: Optional[int] = None,
|
|
) -> ProcessorMixin:
|
|
return self.ctx.get_hf_processor()
|
|
|
|
def _get_feature_extractor(self) -> WhisperFeatureExtractor:
|
|
hf_processor = self._get_hf_processor()
|
|
return hf_processor.audio_processor.feature_extractor # type: ignore
|
|
|
|
def _get_data_parser(self) -> MultiModalDataParser:
|
|
feature_extractor = self._get_feature_extractor()
|
|
return MultiModalDataParser(target_sr=feature_extractor.sampling_rate)
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
# Text-only input not supported in composite processor
|
|
if not mm_data:
|
|
tokenizer = self._get_tokenizer()
|
|
|
|
prompt_ids = tokenizer.encode(
|
|
prompt,
|
|
add_special_tokens=False, # type: ignore
|
|
)
|
|
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
|
|
|
|
mm_data = dict(mm_data)
|
|
audios = mm_data.pop("audios", [])
|
|
|
|
if not audios:
|
|
return super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
)
|
|
|
|
feature_extractor = self._get_feature_extractor()
|
|
mm_kwargs = dict(
|
|
**mm_kwargs,
|
|
sampling_rate=feature_extractor.sampling_rate,
|
|
)
|
|
|
|
# Already resampled by _get_hf_mm_data
|
|
assert is_list_of(audios, np.ndarray)
|
|
|
|
# Ultravox processor doesn't support multiple inputs,
|
|
# therefore we need to input text and audio one by one
|
|
audio_features, audio_token_len = [], []
|
|
shared_outputs = {}
|
|
for audio in audios:
|
|
# NOTE: Ultravox processor accepts "audio" instead of "audios"
|
|
item_processor_data = dict(**mm_data, audio=audio)
|
|
|
|
item_outputs = super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=item_processor_data,
|
|
mm_kwargs=mm_kwargs,
|
|
)
|
|
|
|
audio_features.append(item_outputs.pop("audio_values")[0])
|
|
audio_token_len.append(item_outputs.pop("audio_token_len").item())
|
|
shared_outputs = item_outputs
|
|
|
|
combined_outputs = dict(
|
|
**shared_outputs,
|
|
audio_features=audio_features,
|
|
audio_token_len=audio_token_len,
|
|
)
|
|
return BatchFeature(combined_outputs)
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(
|
|
audio_features=MultiModalFieldConfig.batched("audio"),
|
|
audio_token_len=MultiModalFieldConfig.batched("audio"),
|
|
audio_embeds=MultiModalFieldConfig.batched("audio"),
|
|
)
|
|
|
|
def _get_prompt_replacements(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargs,
|
|
) -> list[PromptReplacement]:
|
|
hf_processor = self._get_hf_processor()
|
|
placeholder = hf_processor.audio_token_replacement # type: ignore
|
|
|
|
def get_replacement_ultravox(item_idx: int):
|
|
audio_token_len = out_mm_kwargs["audio_token_len"][item_idx]
|
|
return placeholder * audio_token_len
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="audio",
|
|
target="<|audio|>",
|
|
replacement=get_replacement_ultravox,
|
|
)
|
|
]
|
|
|
|
def _get_dummy_mm_inputs(
|
|
self,
|
|
mm_counts: Mapping[str, int],
|
|
) -> ProcessorInputs:
|
|
feature_extractor = self._get_feature_extractor()
|
|
|
|
sampling_rate = feature_extractor.sampling_rate
|
|
audio_len = feature_extractor.chunk_length * sampling_rate
|
|
num_audios = mm_counts.get("audio", 0)
|
|
|
|
mm_data = {
|
|
"audio":
|
|
self._get_dummy_audios(length=audio_len, num_audios=num_audios)
|
|
}
|
|
|
|
return ProcessorInputs(
|
|
prompt_text="<|audio|>" * num_audios,
|
|
mm_data=mm_data,
|
|
)
|
|
|
|
|
|
class StackAudioFrames(nn.Module):
|
|
"""
|
|
Stack the audio embedding frames to reduce the sequence length by a factor
|
|
of `stack_factor`.
|
|
"""
|
|
|
|
def __init__(self, stack_factor: int = 8):
|
|
super().__init__()
|
|
self.stack_factor = stack_factor
|
|
|
|
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
|
|
B, T, C = audio_embeds.shape
|
|
T_pad = (T + self.stack_factor -
|
|
1) // self.stack_factor * self.stack_factor
|
|
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T))
|
|
B, T, C = audio_embeds.shape
|
|
audio_embeds = audio_embeds.view(B, T // self.stack_factor,
|
|
C * self.stack_factor)
|
|
return audio_embeds
|
|
|
|
|
|
class FlippedSiluAndMul(SiluAndMul):
|
|
"""Ultravox is trained with SwiGLU with flipped halves."""
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
a, b = x.chunk(2, dim=-1)
|
|
flipped = torch.cat((b, a), dim=-1)
|
|
return super().forward(flipped)
|
|
|
|
|
|
class UltravoxProjector(nn.Module):
|
|
|
|
def __init__(self, config: UltravoxConfig):
|
|
super().__init__()
|
|
self.hidden_dim = config.hidden_size
|
|
self._pad_and_stack = StackAudioFrames(config.stack_factor)
|
|
dim = config.audio_config.hidden_size * config.stack_factor
|
|
self.ln_pre = RMSNorm(dim)
|
|
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
|
|
dim = self.hidden_dim
|
|
|
|
if config.projector_act == "swiglu":
|
|
self.act = FlippedSiluAndMul()
|
|
dim = dim // 2
|
|
else:
|
|
self.act = get_act_fn(config.projector_act)
|
|
|
|
self.linear_2 = nn.Linear(dim,
|
|
config.text_config.hidden_size,
|
|
bias=False)
|
|
self.ln_post = RMSNorm(config.text_config.hidden_size)
|
|
|
|
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
|
|
audio_features = self._pad_and_stack(audio_features)
|
|
audio_features = self.ln_pre(audio_features)
|
|
hidden_states = self.linear_1(audio_features)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
hidden_states = self.ln_post(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class ModifiedWhisperEncoder(WhisperEncoder):
|
|
"""
|
|
Encoder portion of OpenAI's Whisper model.
|
|
|
|
This implementation is a slightly modified version of HF Transformers'
|
|
Whisper Encoder, with only a few fixes:
|
|
1. base_model_prefix updated to allow for doing `.from_pretrained`
|
|
directly on the encoder
|
|
2. allow less than 30 second of audio padding to be passed in:
|
|
- relaxed ValueError check for `input_features` length to be less
|
|
than or equal to `expected_seq_length` instead of strictly equal
|
|
- embed_pos is now sliced to match the length of `inputs_embeds`
|
|
|
|
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
|
See commentary: https://github.com/huggingface/transformers/issues/25744
|
|
"""
|
|
|
|
base_model_prefix = "model.encoder"
|
|
|
|
def forward(
|
|
self,
|
|
input_features,
|
|
):
|
|
expected_seq_length = (self.config.max_source_positions *
|
|
self.conv1.stride[0] * self.conv2.stride[0])
|
|
if input_features.shape[-1] > expected_seq_length:
|
|
raise ValueError(
|
|
f"Whisper expects the mel input features to be of length "
|
|
f"{expected_seq_length} or less, but found "
|
|
f"{input_features.shape[-1]}. Make sure to pad the input mel "
|
|
f"features to {expected_seq_length}.")
|
|
|
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
|
|
|
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
|
embed_pos = self.embed_positions.weight[:inputs_embeds.size(-2)]
|
|
|
|
hidden_states = inputs_embeds + embed_pos
|
|
hidden_states = nn.functional.dropout(hidden_states,
|
|
p=self.dropout,
|
|
training=self.training)
|
|
|
|
for encoder_layer in self.layers:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
None,
|
|
layer_head_mask=None,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens(
|
|
"audio", get_ultravox_max_audio_tokens)
|
|
@MULTIMODAL_REGISTRY.register_processor(UltravoxMultiModalProcessor)
|
|
class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP):
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={"audio_tower.model.encoder.": "audio_tower."})
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = config
|
|
self.multi_modal_config = multimodal_config
|
|
assert self.multi_modal_config
|
|
|
|
self.secondary_weights = []
|
|
self.audio_tower = ModifiedWhisperEncoder(config.audio_config)
|
|
if config.audio_model_id is not None:
|
|
# this prefix is not for initialization, but for loading weights
|
|
# note the trailing dot
|
|
self.secondary_weights.append(
|
|
DefaultModelLoader.Source(
|
|
model_or_path=config.audio_model_id,
|
|
revision=None,
|
|
prefix="audio_tower.",
|
|
))
|
|
self.multi_modal_projector = UltravoxProjector(config)
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
)
|
|
if config.text_model_id is not None:
|
|
# this prefix is not for initialization, but for loading weights
|
|
# note the trailing dot
|
|
self.secondary_weights.append(
|
|
DefaultModelLoader.Source(model_or_path=config.text_model_id,
|
|
revision=None,
|
|
prefix="language_model."))
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors)
|
|
|
|
@cached_property
|
|
def sampler(self):
|
|
if hasattr(self.language_model, "sampler"):
|
|
return self.language_model.sampler
|
|
|
|
return get_sampler()
|
|
|
|
def _audio_features_to_embeddings(
|
|
self, input_features: torch.Tensor) -> torch.Tensor:
|
|
audio_input = input_features.to(self.audio_tower.dtype)
|
|
audio_features = self.audio_tower(audio_input)
|
|
audio_features = audio_features.to(self.audio_tower.dtype)
|
|
audio_embeddings = self.multi_modal_projector(audio_features)
|
|
return audio_embeddings
|
|
|
|
def _parse_and_validate_audio_input(
|
|
self, **kwargs: object) -> Optional[UltravoxAudioInputs]:
|
|
audio_features = kwargs.pop("audio_features", None)
|
|
audio_embeds = kwargs.pop("audio_embeds", None)
|
|
|
|
if audio_features is None and audio_embeds is None:
|
|
return None
|
|
|
|
if audio_features is not None:
|
|
if not isinstance(audio_features, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of audio features. "
|
|
f"Got type: {type(audio_features)}")
|
|
|
|
return UltravoxAudioFeatureInputs(type="audio_features",
|
|
data=audio_features)
|
|
|
|
if audio_embeds is not None:
|
|
if not isinstance(audio_embeds, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of audio embeds. "
|
|
f"Got type: {type(audio_embeds)}")
|
|
|
|
return UltravoxAudioEmbeddingInputs(type="audio_embeds",
|
|
data=audio_embeds)
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def _process_audio_input(
|
|
self, audio_input: UltravoxAudioInputs) -> NestedTensors:
|
|
if audio_input["type"] == "audio_embeds":
|
|
return audio_input["data"]
|
|
|
|
audio_features = audio_input["data"]
|
|
if isinstance(audio_features, torch.Tensor):
|
|
# Combine the B and N dimensions for the encoder/projector
|
|
flattened = flatten_bn(audio_features)
|
|
flattened_embeddings = self._audio_features_to_embeddings(
|
|
flattened)
|
|
|
|
# Restore the original dimensions
|
|
embeddings = flattened_embeddings.unflatten(
|
|
0, audio_features.shape[:2])
|
|
return embeddings
|
|
|
|
result = []
|
|
# TODO: Batch heterogeneous tensors through the encoder/projector
|
|
for audio_features_item in audio_features:
|
|
if isinstance(audio_features_item, torch.Tensor):
|
|
result.append(
|
|
self._audio_features_to_embeddings(audio_features_item))
|
|
else:
|
|
embeddings = [
|
|
# Add a batch dimension to embed it, then remove it.
|
|
self._audio_features_to_embeddings(tensor.unsqueeze(0)
|
|
).squeeze(0)
|
|
for tensor in audio_features_item
|
|
]
|
|
result.append(embeddings)
|
|
|
|
return result
|
|
|
|
def get_multimodal_embeddings(self, **kwargs) -> Optional[NestedTensors]:
|
|
audio_input = self._parse_and_validate_audio_input(**kwargs)
|
|
if audio_input is None:
|
|
return None
|
|
audio_embeddings = self._process_audio_input(audio_input)
|
|
return audio_embeddings
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: Optional[NestedTensors] = None,
|
|
attn_metadata: Optional[AttentionMetadata] = None,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
|
if multimodal_embeddings is not None:
|
|
|
|
# TODO(ywang96): use merge_multimodal_embeddings after
|
|
# v0 is deprecated
|
|
merge_multimodal_embeddings_from_map(
|
|
inputs_embeds, multimodal_embeddings,
|
|
attn_metadata.multi_modal_placeholder_index_maps["audio"])
|
|
return inputs_embeds
|
|
|
|
def forward(self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs) -> Union[torch.Tensor, IntermediateTensors]:
|
|
"""Run forward pass for Ultravox
|
|
|
|
One key thing to understand is the `input_ids` already accounts for the
|
|
positions of the to-be-inserted audio embeddings. The to-be-inserted
|
|
audio has a size that is essentially 6.25 tokens per second of audio.
|
|
|
|
This way, the `positions` and `attn_metadata` are consistent
|
|
with the `input_ids`.
|
|
|
|
Args:
|
|
audio_features: A batch of audio inputs [B, N, 80, M].
|
|
"""
|
|
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
# NOTE: In v1, inputs_embeds is always generated at model runner, this
|
|
# condition is for v0 compatibility.
|
|
elif inputs_embeds is None:
|
|
multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
|
|
|
|
# TODO(ywang96): remove attn_metadata from get_input_embeddings
|
|
# after v0 is deprecated
|
|
inputs_embeds = self.get_input_embeddings(input_ids,
|
|
multimodal_embeddings,
|
|
attn_metadata)
|
|
input_ids = None
|
|
|
|
hidden_states = self.language_model.model(input_ids,
|
|
positions,
|
|
kv_caches,
|
|
attn_metadata,
|
|
intermediate_tensors,
|
|
inputs_embeds=inputs_embeds)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
|
return self.language_model.compute_logits(hidden_states,
|
|
sampling_metadata)
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
return self.language_model.sample(logits, sampling_metadata)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
|
|
loader = AutoWeightsLoader(self,
|
|
ignore_unexpected_prefixes=["audio_tower."])
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|