vllm/vllm/attention/selector.py
Harry Mellor 3b352a2f92
Correct capitalisation: VLLM -> vLLM (#14562)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-03-10 16:36:21 +00:00

187 lines
5.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import os
from contextlib import contextmanager
from functools import cache
from typing import Generator, Optional, Type
import torch
import vllm.envs as envs
from vllm.attention.backends.abstract import AttentionBackend
from vllm.logger import init_logger
from vllm.platforms import _Backend, current_platform
from vllm.utils import STR_BACKEND_ENV_VAR, resolve_obj_by_qualname
logger = init_logger(__name__)
def backend_name_to_enum(backend_name: str) -> Optional[_Backend]:
"""
Convert a string backend name to a _Backend enum value.
Returns:
* _Backend: enum value if backend_name is a valid in-tree type
* None: otherwise it's an invalid in-tree type or an out-of-tree platform is
loaded.
"""
assert backend_name is not None
return _Backend[backend_name] if backend_name in _Backend.__members__ else \
None
def get_env_variable_attn_backend() -> Optional[_Backend]:
'''
Get the backend override specified by the vLLM attention
backend environment variable, if one is specified.
Returns:
* _Backend enum value if an override is specified
* None otherwise
'''
backend_name = os.environ.get(STR_BACKEND_ENV_VAR)
return (None
if backend_name is None else backend_name_to_enum(backend_name))
# Global state allows a particular choice of backend
# to be forced, overriding the logic which auto-selects
# a backend based on system & workload configuration
# (default behavior if this variable is None)
#
# THIS SELECTION TAKES PRECEDENCE OVER THE
# VLLM_ATTENTION_BACKEND ENVIRONMENT VARIABLE
forced_attn_backend: Optional[_Backend] = None
def global_force_attn_backend(attn_backend: Optional[_Backend]) -> None:
'''
Force all attention operations to use a specified backend.
Passing `None` for the argument re-enables automatic
backend selection.,
Arguments:
* attn_backend: backend selection (None to revert to auto)
'''
global forced_attn_backend
forced_attn_backend = attn_backend
def get_global_forced_attn_backend() -> Optional[_Backend]:
'''
Get the currently-forced choice of attention backend,
or None if auto-selection is currently enabled.
'''
return forced_attn_backend
def get_attn_backend(
head_size: int,
dtype: torch.dtype,
kv_cache_dtype: Optional[str],
block_size: int,
is_attention_free: bool,
is_blocksparse: bool = False,
use_mla: bool = False,
) -> Type[AttentionBackend]:
"""Selects which attention backend to use and lazily imports it."""
# Accessing envs.* behind an @lru_cache decorator can cause the wrong
# value to be returned from the cache if the value changes between calls.
# To avoid this, we read envs.VLLM_USE_V1 here and pass it explicitly to the
# private function.
return _cached_get_attn_backend(
head_size=head_size,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
block_size=block_size,
is_attention_free=is_attention_free,
is_blocksparse=is_blocksparse,
use_v1=envs.VLLM_USE_V1,
use_mla=use_mla,
)
@cache
def _cached_get_attn_backend(
head_size: int,
dtype: torch.dtype,
kv_cache_dtype: Optional[str],
block_size: int,
is_attention_free: bool,
is_blocksparse: bool = False,
use_v1: bool = False,
use_mla: bool = False,
) -> Type[AttentionBackend]:
if is_blocksparse:
logger.info("Using BlocksparseFlashAttention backend.")
from vllm.attention.backends.blocksparse_attn import (
BlocksparseFlashAttentionBackend)
return BlocksparseFlashAttentionBackend
# If there are no attention layers (e.g. we are running Mamba),
# use the placeholder NO_ATTENTION
if is_attention_free:
from vllm.attention.backends.placeholder_attn import (
PlaceholderAttentionBackend)
return PlaceholderAttentionBackend
# Check whether a particular choice of backend was
# previously forced.
#
# THIS SELECTION OVERRIDES THE VLLM_ATTENTION_BACKEND
# ENVIRONMENT VARIABLE.
selected_backend = None
backend_by_global_setting: Optional[_Backend] = (
get_global_forced_attn_backend())
if backend_by_global_setting is not None:
selected_backend = backend_by_global_setting
else:
# Check the environment variable and override if specified
backend_by_env_var: Optional[str] = envs.VLLM_ATTENTION_BACKEND
if backend_by_env_var is not None:
selected_backend = backend_name_to_enum(backend_by_env_var)
# get device-specific attn_backend
attention_cls = current_platform.get_attn_backend_cls(
selected_backend, head_size, dtype, kv_cache_dtype, block_size, use_v1,
use_mla)
if not attention_cls:
raise ValueError(
f"Invalid attention backend for {current_platform.device_name}")
return resolve_obj_by_qualname(attention_cls)
@contextmanager
def global_force_attn_backend_context_manager(
attn_backend: _Backend) -> Generator[None, None, None]:
'''
Globally force a vLLM attention backend override within a
context manager, reverting the global attention backend
override to its prior state upon exiting the context
manager.
Arguments:
* attn_backend: attention backend to force
Returns:
* Generator
'''
# Save the current state of the global backend override (if any)
original_value = get_global_forced_attn_backend()
# Globally force the new backend override
global_force_attn_backend(attn_backend)
# Yield control back to the enclosed code block
try:
yield
finally:
# Revert the original global backend override, if any
global_force_attn_backend(original_value)