vllm/vllm/attention/ops/paged_attn.py
Aleksandr Malyshev e73ff24e31
[ROCM][KERNEL] Paged attention for V1 (#15720)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Signed-off-by: root <root@banff-cyxtera-s65-4.amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: root <root@banff-cyxtera-s65-4.amd.com>
2025-04-02 19:48:00 -07:00

256 lines
8.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from dataclasses import dataclass
from typing import List, Optional, Tuple
import torch
from vllm import _custom_ops as ops
from vllm.triton_utils import HAS_TRITON
if HAS_TRITON:
from vllm.attention.ops.prefix_prefill import context_attention_fwd
# Should be the same as PARTITION_SIZE in `paged_attention_v2_launcher`.
_PARTITION_SIZE = 512
@dataclass
class PagedAttentionMetadata:
"""Metadata for PagedAttention."""
# (batch_size,). The length of sequences (entire tokens seen so far) per
# sequence.
seq_lens_tensor: Optional[torch.Tensor]
# Maximum sequence length in the batch. 0 if it is prefill-only batch.
max_decode_seq_len: int
# (batch_size, max_blocks_per_seq).
# Block addresses per sequence. (Seq id -> list of physical block)
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
# in the kv cache. Each block can contain up to block_size tokens.
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
# captured.
block_tables: Optional[torch.Tensor]
class PagedAttention:
@staticmethod
def get_supported_head_sizes() -> List[int]:
return [32, 64, 80, 96, 112, 120, 128, 192, 256]
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
return (2, num_blocks, block_size * num_kv_heads * head_size)
@staticmethod
def split_kv_cache(
kv_cache: torch.Tensor,
num_kv_heads: int,
head_size: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
x = 16 // kv_cache.element_size()
num_blocks = kv_cache.shape[1]
key_cache = kv_cache[0]
key_cache = key_cache.view(num_blocks, num_kv_heads, head_size // x,
-1, x)
value_cache = kv_cache[1]
value_cache = value_cache.view(num_blocks, num_kv_heads, head_size, -1)
return key_cache, value_cache
@staticmethod
def write_to_paged_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache_dtype: str,
k_scale: torch.Tensor,
v_scale: torch.Tensor,
) -> None:
ops.reshape_and_cache(
key,
value,
key_cache,
value_cache,
slot_mapping.flatten(),
kv_cache_dtype,
k_scale,
v_scale,
)
@staticmethod
def forward_decode(
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_tables: torch.Tensor,
seq_lens: torch.Tensor,
max_seq_len: int,
kv_cache_dtype: str,
num_kv_heads: int,
scale: float,
alibi_slopes: Optional[torch.Tensor],
k_scale: torch.Tensor,
v_scale: torch.Tensor,
tp_rank: int = 0,
blocksparse_local_blocks: int = 0,
blocksparse_vert_stride: int = 0,
blocksparse_block_size: int = 64,
blocksparse_head_sliding_step: int = 0,
) -> torch.Tensor:
if blocksparse_vert_stride is not None and blocksparse_vert_stride > 1:
# use blocksparse paged attention
block_size = value_cache.size(-1)
assert (blocksparse_block_size > 0 and
blocksparse_block_size % block_size == 0), \
(f"{blocksparse_block_size=} needs to be a multiple of"
f"{block_size=} used in block_tables.")
output = torch.empty_like(query)
block_size = value_cache.shape[3]
num_seqs, num_heads, head_size = query.shape
max_num_partitions = ((max_seq_len + _PARTITION_SIZE - 1) //
_PARTITION_SIZE)
# NOTE(woosuk): We use a simple heuristic to decide whether to use
# PagedAttention V1 or V2. If the number of partitions is 1, we use
# V1 to avoid the overhead of reduction. Also, if the number of
# sequences or heads is large, we use V1 since there is enough work
# to parallelize.
# TODO(woosuk): Tune this heuristic.
# For context len > 8192, use V2 kernel to avoid shared memory shortage.
use_v1 = (max_seq_len <= 8192
and (max_num_partitions == 1 or num_seqs * num_heads > 512))
if use_v1:
# Run PagedAttention V1.
ops.paged_attention_v1(
output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
tp_rank,
blocksparse_local_blocks,
blocksparse_vert_stride,
blocksparse_block_size,
blocksparse_head_sliding_step,
)
else:
# Run PagedAttention V2.
assert _PARTITION_SIZE % block_size == 0
tmp_output = torch.empty(
size=(num_seqs, num_heads, max_num_partitions, head_size),
dtype=output.dtype,
device=output.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, max_num_partitions),
dtype=torch.float32,
device=output.device,
)
max_logits = torch.empty_like(exp_sums)
ops.paged_attention_v2(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
tp_rank,
blocksparse_local_blocks,
blocksparse_vert_stride,
blocksparse_block_size,
blocksparse_head_sliding_step,
)
return output
@staticmethod
def forward_prefix(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache_dtype: str,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_tables: torch.Tensor,
query_start_loc: torch.Tensor,
seq_lens_tensor: torch.Tensor,
max_query_len: int,
alibi_slopes: Optional[torch.Tensor],
sliding_window: Optional[int],
k_scale: torch.Tensor,
v_scale: torch.Tensor,
) -> torch.Tensor:
output = torch.empty_like(query)
max_seq_len = None
context_attention_fwd(
query,
key,
value,
output,
kv_cache_dtype,
key_cache,
value_cache,
block_tables,
# query_start_loc is (batch_size + 1,)
query_start_loc,
seq_lens_tensor,
max_seq_len,
max_query_len,
k_scale,
v_scale,
alibi_slopes,
sliding_window,
)
return output
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
src_key_cache = src_kv_cache[0]
dst_key_cache = dst_kv_cache[0]
ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst)
src_value_cache = src_kv_cache[1]
dst_value_cache = dst_kv_cache[1]
ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst)
@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: torch.Tensor,
) -> None:
key_caches = [kv_cache[0] for kv_cache in kv_caches]
value_caches = [kv_cache[1] for kv_cache in kv_caches]
ops.copy_blocks(key_caches, value_caches, src_to_dists)