vllm/csrc/rocm/attention.cu
Aleksandr Malyshev e73ff24e31
[ROCM][KERNEL] Paged attention for V1 (#15720)
Signed-off-by: Aleksandr Malyshev <maleksan@amd.com>
Signed-off-by: root <root@banff-cyxtera-s65-4.amd.com>
Co-authored-by: Aleksandr Malyshev <maleksan@amd.com>
Co-authored-by: root <root@banff-cyxtera-s65-4.amd.com>
2025-04-02 19:48:00 -07:00

1829 lines
70 KiB
Plaintext

/*
* Copyright (c) 2024, The vLLM team.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <hip/hip_fp8.h>
#include <hip/hip_bf16.h>
#include "cuda_compat.h"
#include <algorithm>
#include "../attention/dtype_fp8.cuh"
#include "../quantization/fp8/amd/quant_utils.cuh"
#if defined(__HIPCC__) && (defined(__gfx90a__) || defined(__gfx942__))
#define __HIP__MI300_MI250__
#endif
#if defined(NDEBUG)
#undef NDEBUG
#include <assert.h>
#define UNREACHABLE_CODE assert(false);
#define NDEBUG
#else
#define UNREACHABLE_CODE assert(false);
#endif
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
#if defined(__HIP__MI300_MI250__) // TODO: Add NAVI support
#define GCN_MFMA_INSTR1 __builtin_amdgcn_mfma_f32_16x16x4f32
#define GCN_MFMA_INSTR __builtin_amdgcn_mfma_f32_4x4x4f16
using floatx4 = __attribute__((__vector_size__(4 * sizeof(float)))) float;
using float16x4 =
__attribute__((__vector_size__(4 * sizeof(_Float16)))) _Float16;
typedef float16x4 _Half4;
using float16x2 =
__attribute__((__vector_size__(2 * sizeof(_Float16)))) _Float16;
typedef float16x2 _Half2;
typedef struct _Half8 {
_Half4 xy[2];
} _Half8;
using bit16_t = uint16_t;
using bit16x4 = __attribute__((__vector_size__(4 * sizeof(uint16_t)))) uint16_t;
typedef bit16x4 _B16x4;
typedef struct _B16x8 {
_B16x4 xy[2];
} _B16x8;
using _B8x8 = uint2;
using _B8x4 = int32_t; // used in builtins
using bit8_t = uint8_t;
typedef struct _B8x16 {
_B8x8 xy[2];
} _B8x16;
template <typename T, int absz, int cbid, int blgp>
__device__ __forceinline__ floatx4 gcn_mfma4x4x4_instr(const _B16x4& inpA,
const _B16x4& inpB,
const floatx4& inpC) {
if constexpr (std::is_same<T, _Float16>::value) {
return __builtin_amdgcn_mfma_f32_4x4x4f16(inpA, inpB, inpC, absz, cbid,
blgp);
} else if constexpr (std::is_same<T, __hip_bfloat16>::value) {
return __builtin_amdgcn_mfma_f32_4x4x4bf16_1k(inpA, inpB, inpC, absz, cbid,
blgp);
} else {
static_assert(false, "unsupported 16b dtype");
}
}
template <typename T, int absz, int cbid, int blgp>
__device__ __forceinline__ floatx4 gcn_mfma16x16x16_instr(const _B16x4& inpA,
const _B16x4& inpB,
const floatx4& inpC) {
if constexpr (std::is_same<T, _Float16>::value) {
return __builtin_amdgcn_mfma_f32_16x16x16f16(inpA, inpB, inpC, absz, cbid,
blgp);
} else if constexpr (std::is_same<T, __hip_bfloat16>::value) {
return __builtin_amdgcn_mfma_f32_16x16x16bf16_1k(inpA, inpB, inpC, absz,
cbid, blgp);
} else {
static_assert(false, "unsupported 16b dtype");
}
}
template <typename T>
__device__ __forceinline__ float to_float(const T& inp) {
if constexpr (std::is_same<T, _Float16>::value) {
return (float)inp;
} else if constexpr (std::is_same<T, __hip_bfloat16>::value) {
return __bfloat162float(inp);
} else {
static_assert(false, "unsupported 16b dtype");
}
}
template <typename T>
__device__ __forceinline__ T from_float(const float& inp) {
if constexpr (std::is_same<T, _Float16>::value) {
return (_Float16)inp;
} else if constexpr (std::is_same<T, __hip_bfloat16>::value) {
return __float2bfloat16(inp);
} else {
static_assert(false, "unsupported 16b dtype");
}
}
template <typename T>
__device__ __forceinline__ _B16x4 from_floatx4(const floatx4& inp) {
[[maybe_unused]] union tmpcvt {
uint16_t u;
_Float16 f;
__hip_bfloat16 b;
} t16;
_B16x4 ret;
if constexpr (std::is_same<T, _Float16>::value) {
union h2cvt {
__half2 h2[2];
_B16x4 b16x4;
} u;
u.h2[0] = __float22half2_rn(make_float2(inp[0], inp[1]));
u.h2[1] = __float22half2_rn(make_float2(inp[2], inp[3]));
return u.b16x4;
} else if constexpr (std::is_same<T, __hip_bfloat16>::value) {
for (int i = 0; i < 4; i++) {
union fcvt {
uint32_t u32;
float f32;
} u;
u.f32 = inp[i];
u.u32 += 0x7fff + ((u.u32 >> 16) & 1); // BF16 RNE with no nan/inf check
ret[i] = uint16_t(u.u32 >> 16);
}
return ret;
} else {
static_assert(false, "unsupported 16b dtype");
}
}
template <typename T>
__device__ __forceinline__ _B16x4 addx4(const _B16x4& inp1,
const _B16x4& inp2) {
[[maybe_unused]] union tmpcvt {
uint16_t u;
_Float16 f;
__hip_bfloat16 b;
} t1, t2, res;
_B16x4 ret;
if constexpr (std::is_same<T, _Float16>::value) {
union h2cvt {
_B16x4 b16x4;
__half2 h2[2];
} u1, u2, s;
u1.b16x4 = inp1;
u2.b16x4 = inp2;
s.h2[0] = u1.h2[0] + u2.h2[0];
s.h2[1] = u1.h2[1] + u2.h2[1];
return s.b16x4;
} else if constexpr (std::is_same<T, __hip_bfloat16>::value) {
for (int i = 0; i < 4; i++) {
union fcvt {
float f32;
uint32_t i32;
} u1, u2, s;
u1.i32 = uint32_t(inp1[i]) << 16;
u2.i32 = uint32_t(inp2[i]) << 16;
s.f32 = u1.f32 + u2.f32;
ret[i] = uint16_t(s.i32 >> 16);
}
return ret;
} else {
static_assert(false, "unsupported 16b dtype");
}
}
__device__ __forceinline__ floatx4 to_float_fp8x4(const _B8x4& inp) {
// From MI300+ platforms, we have v_cvt_pk_f32_fp8 instruction
// to convert 2 packed fp8 to 2 packed fp32 values.
// However, in MI200 platforms, we only have v_cvt_f32_fp8
// to convert fp8 values individually. So we added
// #else case for fewer instructions (# inst=2) in MI300+,
// and fallback to
// #if case for other platforms (# inst=4).
#if defined(__gfx90a__)
float4 f32x4 = vllm::fp8::vec_conversion<float4, uint32_t>(
*reinterpret_cast<const uint32_t*>(&inp));
return *reinterpret_cast<floatx4*>(&f32x4);
#else // MI3xx+ optimized builtins
const auto f0 = __builtin_amdgcn_cvt_pk_f32_fp8(inp, false);
const auto f1 = __builtin_amdgcn_cvt_pk_f32_fp8(inp, true);
floatx4 ret;
ret[0] = f0[0];
ret[1] = f0[1];
ret[2] = f1[0];
ret[3] = f1[1];
return ret;
#endif
}
template <typename T>
__device__ __forceinline__ _B16x4 from_floatx4_rtz(const floatx4& inp) {
_B16x4 ret;
if constexpr (std::is_same<T, _Float16>::value) {
union h2cvt {
_Half2 h2[2];
_B16x4 b16x4;
} u;
u.h2[0] = __builtin_amdgcn_cvt_pkrtz(inp[0], inp[1]);
u.h2[1] = __builtin_amdgcn_cvt_pkrtz(inp[2], inp[3]);
return u.b16x4;
} else if constexpr (std::is_same<T, __hip_bfloat16>::value) {
for (int i = 0; i < 4; i++) {
union fcvt {
uint32_t i32;
float f32;
} u;
u.f32 = inp[i];
ret[i] = uint16_t(u.i32 >> 16);
}
return ret;
} else {
static_assert(false, "unsupported 16b dtype");
}
}
template <typename T>
__device__ __forceinline__ _B16x8 convert_b8x8_custom(const _B8x8 input) {
union {
_B8x8 b8x8;
_B8x4 b8x4[2];
} tmp;
tmp.b8x8 = input;
_B16x8 ret;
for (int i = 0; i < 2; i++) {
ret.xy[i] = from_floatx4_rtz<T>(to_float_fp8x4(tmp.b8x4[i]));
}
return ret;
}
// grid (num_seqs, num_partitions,num_kv_heads)
// block (256)
// clang-format off
template <typename scalar_t, typename cache_t,
vllm::Fp8KVCacheDataType KV_DTYPE, typename OUTT, int BLOCK_SIZE,
int HEAD_SIZE, int NUM_THREADS, bool ALIBI_ENABLED, int GQA_RATIO>
__global__
__launch_bounds__(NUM_THREADS, 5) void paged_attention_ll4mi_QKV_mfma16_kernel(
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads,
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride,
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions, head_size]
OUTT* __restrict__ final_out, // [num_seqs, num_heads, head_size]
int max_ctx_blocks, const float* k_scale, const float* v_scale) {
// clang-format on
constexpr int NWARPS = NUM_THREADS / WARP_SIZE;
const auto warpid = threadIdx.x / WARP_SIZE;
const auto laneid = threadIdx.x % WARP_SIZE;
const int lane4id = laneid % 4;
const int lane16id = laneid % 16;
const int rowid = laneid / 16;
const auto seq_idx = blockIdx.x;
// NOTE queries with sequence len > 1 are prefills and taken care by another
// kernel.
if (query_start_loc_ptr != nullptr &&
(query_start_loc_ptr[seq_idx + 1] - query_start_loc_ptr[seq_idx]) != 1) {
return;
}
const auto partition_idx = blockIdx.y;
constexpr int T_PAR_SIZE = 256; // token partition size set to 256
const auto max_num_partitions = gridDim.y;
const int context_len = context_lens[seq_idx];
const int partition_start_token_idx =
partition_idx * T_PAR_SIZE; // partition_size;
// exit if partition is out of context for seq
if (partition_start_token_idx >= context_len) {
return;
}
constexpr int GQA_RATIO4 = DIVIDE_ROUND_UP(GQA_RATIO, 4);
[[maybe_unused]] __shared__ float shared_qk_max[NWARPS][16 + 1];
[[maybe_unused]] __shared__ float shared_exp_sum[NWARPS][16 + 1];
// shared_logits is used for multiple purposes
__shared__ _B16x4 shared_logits[NWARPS][4][16][4];
// for QK mfma16x16, layout is QHead/Tokenx16 across every 16 lanes, 16 Bytes
// HeadElements in each lane, 4x16B HeadElements across 4 rows of warp
constexpr int ROWS_PER_WARP =
WARP_SIZE / 16; // rows refers to 16 lanes; refer DDP (Data Parallel
// Processing) terminology
constexpr int CONTIGUOUS_KV_ELEMS_16B_LOAD =
16 / sizeof(cache_t); // 8 for 16 bit cache type, 16 for 8 bit types
constexpr int QKHE_PER_FETCH =
CONTIGUOUS_KV_ELEMS_16B_LOAD *
ROWS_PER_WARP; // each fetch across a warp fetches these many elements
constexpr int QK_SIZE_RATIO =
sizeof(scalar_t) /
sizeof(cache_t); // 1 for 16bit types, 2 for 8bit types
constexpr int QKHELOOP = HEAD_SIZE / QKHE_PER_FETCH; // 4xQKHE_16B across
// warp
_B16x8 Qlocal[QKHELOOP]
[QK_SIZE_RATIO]; // note that 16 contiguous elements of Q should
// be fetched per lane for 8 bit cache types :
// QK_SIZE_RATIO changes for this
constexpr int CONTIGUOUS_SCALAR_ELEMS_16B = 16 / sizeof(scalar_t);
constexpr int TOKENS_PER_WARP =
T_PAR_SIZE /
NWARPS; // sub partition of tokens per warp for qk calculation
constexpr int TLOOP =
TOKENS_PER_WARP /
16; // each mfma16x16x16 instruction processes 16 tokens
// can be interpreted as B8x16 for 8 bit types
_B16x8 Klocal[TLOOP][QKHELOOP];
const auto wg_start_head_idx = blockIdx.z * GQA_RATIO;
const auto wg_start_kv_head_idx = blockIdx.z;
const auto total_num_heads = gridDim.z * GQA_RATIO;
// for QK mfma, tokens in multiples of TOKENS_PER_WARP are spread across warps
// each mfma takes QH16xT16x16HE across warp
// repeat mfmas across QKHELOOP dimension
// output layout from QKmfma : QH16xT4x4 16 qheads across 16 lanes, 16 tokens
// across 4 rows x 4 tokens per lane
const int num_context_blocks = DIVIDE_ROUND_UP(context_len, BLOCK_SIZE);
const int last_ctx_block = num_context_blocks - 1;
const int* block_table_seq = block_tables + seq_idx * max_num_blocks_per_seq;
int kphysical_block_number[TLOOP];
// fetch k physical block numbers
for (int token_depth = 0; token_depth < TLOOP; token_depth++) {
const int klocal_token_idx =
TOKENS_PER_WARP * warpid + token_depth * 16 + lane16id;
const int kglobal_token_idx = partition_start_token_idx + klocal_token_idx;
const int kblock_idx = (kglobal_token_idx < context_len)
? kglobal_token_idx / BLOCK_SIZE
: last_ctx_block;
kphysical_block_number[token_depth] = block_table_seq[kblock_idx];
}
// fetch Q in shared across warps and then write to registers
const int local_qhead_idx = 4 * warpid + rowid;
const int global_qhead_idx = wg_start_head_idx + local_qhead_idx;
const int64_t query_start_off = static_cast<int64_t>(
query_start_loc_ptr ? query_start_loc_ptr[seq_idx] : seq_idx);
const scalar_t* q_ptr =
q + query_start_off * q_stride + global_qhead_idx * HEAD_SIZE;
const int qhead_element = lane16id * CONTIGUOUS_SCALAR_ELEMS_16B;
if ((local_qhead_idx < GQA_RATIO) && (qhead_element < HEAD_SIZE)) {
const scalar_t* q_fetch_ptr = q_ptr + qhead_element;
const _B16x8* q_fetch_ptr_16B =
reinterpret_cast<const _B16x8*>(q_fetch_ptr);
_B16x8 tmp = *q_fetch_ptr_16B;
if constexpr (KV_DTYPE == vllm::Fp8KVCacheDataType::kAuto) {
const int offset1 =
lane16id /
4; // 16 contiguous chunks of head elems are spread across 4x4lanes
shared_logits[offset1][lane4id][local_qhead_idx][0] = tmp.xy[0];
shared_logits[offset1][lane4id][local_qhead_idx][1] = tmp.xy[1];
} else {
for (int i = 0; i < 2; i++) {
const int head_elem = lane16id * 2 + i; // element id in _B16x4 terms
const int offset3 = head_elem % 4;
const int offset2 = (head_elem / 4) % 4;
const int offset1 = head_elem / 4 / 4;
shared_logits[offset1][offset2][local_qhead_idx][offset3] = tmp.xy[i];
}
}
}
__syncthreads();
for (int qkhe_depth = 0; qkhe_depth < QKHELOOP; qkhe_depth++) {
for (int qkratio = 0; qkratio < QK_SIZE_RATIO; qkratio++) {
for (int i = 0; i < 2; i++) {
Qlocal[qkhe_depth][qkratio].xy[i] =
shared_logits[qkhe_depth][rowid][lane16id % GQA_RATIO]
[2 * qkratio + i];
}
}
}
constexpr int KX =
16 / sizeof(cache_t); // vLLM defines x as 16 Bytes of kv cache elements
const cache_t* k_ptr = k_cache + wg_start_kv_head_idx * kv_head_stride;
const int row_head_elem = rowid * CONTIGUOUS_KV_ELEMS_16B_LOAD;
// fetch K values
for (int token_depth = 0; token_depth < TLOOP; token_depth++) {
const int64_t kblock_number =
static_cast<int64_t>(kphysical_block_number[token_depth]);
const cache_t* k_ptr2 = k_ptr + kblock_number * kv_block_stride;
const int klocal_token_idx =
TOKENS_PER_WARP * warpid + token_depth * 16 + lane16id;
[[maybe_unused]] const int kglobal_token_idx =
partition_start_token_idx + klocal_token_idx;
const int kphysical_block_offset = klocal_token_idx % BLOCK_SIZE;
const cache_t* k_ptr3 = k_ptr2 + kphysical_block_offset * KX;
for (int qkhe_depth = 0; qkhe_depth < QKHELOOP; qkhe_depth++) {
const int head_elem = row_head_elem + qkhe_depth * QKHE_PER_FETCH;
const int offset1 = head_elem / KX;
const int offset2 = head_elem % KX;
const cache_t* k_fetch_ptr = k_ptr3 + offset1 * BLOCK_SIZE * KX + offset2;
const _B16x8* k_fetch_ptr_16B =
reinterpret_cast<const _B16x8*>(k_fetch_ptr);
Klocal[token_depth][qkhe_depth] = *k_fetch_ptr_16B;
}
}
float alibi_slope;
if constexpr (ALIBI_ENABLED) {
const int alibi_head_idx = wg_start_head_idx + lane16id;
alibi_slope = (lane16id < GQA_RATIO) ? alibi_slopes[alibi_head_idx] : 0.f;
}
constexpr int VTOKENS_PER_LANE =
TOKENS_PER_WARP / ROWS_PER_WARP; // 64/4 = 16 contiguous vtokens per lane
constexpr int VBLOCKS_PER_LANE =
1; // assumes block size >=16, each lane can correspond to 1 block only
constexpr int VTLOOP = NWARPS; // corresponds to tokens across warps
constexpr int VTLANELOOP = DIVIDE_ROUND_UP(
VTOKENS_PER_LANE,
CONTIGUOUS_KV_ELEMS_16B_LOAD); // optimized for 16B fetches; assumes
// minimum block size is 16
constexpr int VHELOOP = HEAD_SIZE / 16 / NWARPS;
int vphysical_block_number[VTLOOP][VBLOCKS_PER_LANE];
// fetch v physical block numbers
for (int vtoken_depth = 0; vtoken_depth < VTLOOP; vtoken_depth++) {
for (int vblock_depth = 0; vblock_depth < VBLOCKS_PER_LANE;
vblock_depth++) {
const int vlocal_token_idx =
vtoken_depth * VTOKENS_PER_LANE * ROWS_PER_WARP +
rowid * VTOKENS_PER_LANE + vblock_depth * BLOCK_SIZE;
// Safe to use an int32_t here assuming we are working with < 2 billion
// tokens
const int vglobal_token_idx =
partition_start_token_idx + vlocal_token_idx;
const int vblock_idx = (vglobal_token_idx < context_len)
? vglobal_token_idx / BLOCK_SIZE
: last_ctx_block;
vphysical_block_number[vtoken_depth][vblock_depth] =
block_table_seq[vblock_idx];
}
}
_B16x8 Vlocal[VTLOOP][VHELOOP][VTLANELOOP]; // this could be B8x16 too
const cache_t* v_ptr = v_cache + wg_start_kv_head_idx * kv_head_stride +
((rowid * VTOKENS_PER_LANE) % BLOCK_SIZE);
// v fetches are 16head elems across lanes x 16 tokens per lane
for (int vhe_depth = 0; vhe_depth < VHELOOP; vhe_depth++) {
const int vhead_elem = vhe_depth * NWARPS * 16 + warpid * 16 + lane16id;
const cache_t* v_ptr2 = v_ptr + vhead_elem * BLOCK_SIZE;
for (int vtoken_depth = 0; vtoken_depth < VTLOOP; vtoken_depth++) {
for (int vfetch_depth = 0; vfetch_depth < VTLANELOOP; vfetch_depth++) {
const int vblock_depth = 0;
const int64_t vblock_number = static_cast<int64_t>(
vphysical_block_number[vtoken_depth][vblock_depth]);
const cache_t* v_ptr3 = v_ptr2 + (vblock_number * kv_block_stride);
const cache_t* v_fetch_ptr =
v_ptr3 + vfetch_depth * CONTIGUOUS_KV_ELEMS_16B_LOAD;
const _B16x8* v_fetch_ptr_16B =
reinterpret_cast<const _B16x8*>(v_fetch_ptr);
Vlocal[vtoken_depth][vhe_depth][vfetch_depth] = *v_fetch_ptr_16B;
}
}
}
// calculate post qk mfma scale
float scale2 = scale;
if constexpr (KV_DTYPE != vllm::Fp8KVCacheDataType::kAuto) {
// multiply by k_scale if fp8 kv cache
scale2 *= *k_scale;
}
floatx4 d_out[TLOOP];
// qk mfma
for (int token_depth = 0; token_depth < TLOOP; token_depth++) {
d_out[token_depth] = {0};
for (int qkhe_depth = 0; qkhe_depth < QKHELOOP; qkhe_depth++) {
if constexpr (KV_DTYPE == vllm::Fp8KVCacheDataType::kAuto) {
for (int qkratio = 0; qkratio < QK_SIZE_RATIO; qkratio++) {
for (int i = 0; i < 2; i++) {
d_out[token_depth] = gcn_mfma16x16x16_instr<scalar_t, 0, 0, 0>(
Klocal[token_depth][qkhe_depth].xy[i],
Qlocal[qkhe_depth][qkratio].xy[i], d_out[token_depth]);
}
}
} else { // kv cache dtype fp8
auto Ktmp = Klocal[token_depth][qkhe_depth];
_B8x16 Ktmp8x16 = *reinterpret_cast<_B8x16*>(&Ktmp);
for (int qkratio = 0; qkratio < QK_SIZE_RATIO; qkratio++) {
_B8x8 Ktmp8x8 = Ktmp8x16.xy[qkratio];
_B16x8 Klocaltmp = convert_b8x8_custom<scalar_t>(Ktmp8x8);
for (int i = 0; i < 2; i++) {
d_out[token_depth] = gcn_mfma16x16x16_instr<scalar_t, 0, 0, 0>(
Klocaltmp.xy[i], Qlocal[qkhe_depth][qkratio].xy[i],
d_out[token_depth]);
}
}
}
}
d_out[token_depth] *= scale2;
}
const int qkout_token_idx =
partition_start_token_idx + TOKENS_PER_WARP * warpid + rowid * 4;
// apply alibi
if constexpr (ALIBI_ENABLED) {
for (int token_depth = 0; token_depth < TLOOP; token_depth++) {
const int local_token_idx = qkout_token_idx + token_depth * 16;
const int alibi_offset = local_token_idx - context_len + 1;
for (int i = 0; i < 4; i++) {
d_out[token_depth][i] += alibi_slope * (alibi_offset + i);
}
}
}
// calculate qk_max and exp_sum per warp and write to shared memory
float qk_max = -FLT_MAX;
float exp_sum = 0.0f;
for (int token_depth = 0; token_depth < TLOOP; token_depth++) {
const int local_token_idx = qkout_token_idx + token_depth * 16;
for (int i = 0; i < 4; i++) {
const float tmp = (local_token_idx + i < context_len)
? d_out[token_depth][i]
: -FLT_MAX;
qk_max = fmaxf(qk_max, tmp);
}
}
for (int mask = WARP_SIZE / 2; mask >= 16; mask /= 2) {
qk_max = fmaxf(qk_max, __shfl_xor(qk_max, mask));
}
for (int token_depth = 0; token_depth < TLOOP; token_depth++) {
const int local_token_idx = qkout_token_idx + token_depth * 16;
for (int i = 0; i < 4; i++) {
const float tmp = (local_token_idx + i < context_len)
? __expf(d_out[token_depth][i] - qk_max)
: 0.0f;
d_out[token_depth][i] = tmp;
exp_sum += tmp;
}
}
for (int mask = WARP_SIZE / 2; mask >= 16; mask /= 2) {
exp_sum += __shfl_xor(exp_sum, mask);
}
__syncthreads(); // sync before writing to shared mem
float* shared_mem = reinterpret_cast<float*>(shared_logits);
if (laneid < 16) {
const int qk_max_offset = warpid * 16 + lane16id;
shared_mem[qk_max_offset] = qk_max;
const int exp_sum_offset = NWARPS * 16 + qk_max_offset;
shared_mem[exp_sum_offset] = exp_sum;
}
__syncthreads();
// calculate partition qk_max and exp_sum
float partition_qk_max = -FLT_MAX;
float warp_qk_max_exp[NWARPS];
float partition_exp_sum = 0.0f;
for (int w = 0; w < NWARPS; w++) {
warp_qk_max_exp[w] = shared_mem[w * 16 + lane16id];
partition_qk_max = fmaxf(partition_qk_max, warp_qk_max_exp[w]);
}
for (int w = 0; w < NWARPS; w++) {
warp_qk_max_exp[w] = __expf(warp_qk_max_exp[w] - partition_qk_max);
partition_exp_sum +=
shared_mem[NWARPS * 16 + w * 16 + lane16id] * warp_qk_max_exp[w];
}
const float inv_sum_scale =
__fdividef(1.f, partition_exp_sum + 1e-6f) * warp_qk_max_exp[warpid];
__syncthreads();
// disable rtz conversion due to its impact on accuracy.
constexpr bool LOGITS_RTZ_CONVERSION = false;
// write logits to shared mem
for (int token_depth = 0; token_depth < TLOOP; token_depth++) {
d_out[token_depth] *= inv_sum_scale;
if constexpr (LOGITS_RTZ_CONVERSION) {
// use rtz conversion for better performance, with negligible impact on
// accuracy
shared_logits[warpid][token_depth][lane16id][rowid] =
from_floatx4_rtz<scalar_t>(d_out[token_depth]);
} else {
shared_logits[warpid][token_depth][lane16id][rowid] =
from_floatx4<scalar_t>(d_out[token_depth]);
}
}
// write out partition max_logits and exp_sum
if (threadIdx.x < GQA_RATIO) {
const int qhead_idx = lane16id;
const int64_t offset = static_cast<int64_t>(seq_idx) *
static_cast<int64_t>(total_num_heads) *
static_cast<int64_t>(max_num_partitions) +
(static_cast<int64_t>(wg_start_head_idx) +
static_cast<int64_t>(qhead_idx)) *
static_cast<int64_t>(max_num_partitions) +
static_cast<int64_t>(partition_idx);
max_logits[offset] = partition_qk_max;
exp_sums[offset] = partition_exp_sum;
}
__syncthreads();
constexpr int ELEMS8_ELEMS4_RATIO = 8 / 4;
constexpr int ELEMS16_ELEMS8_RATIO = 16 / 8;
_B16x4 outelems[VHELOOP];
// Softmax V mfma
// v layout: 16he across lanes x 16 tokens per lane
for (int vhe_depth = 0; vhe_depth < VHELOOP; vhe_depth++) {
floatx4 tmp_out = {0};
for (int vtoken_depth = 0; vtoken_depth < VTLOOP; vtoken_depth++) {
if constexpr (KV_DTYPE == vllm::Fp8KVCacheDataType::kAuto) {
for (int vfetch_depth = 0; vfetch_depth < VTLANELOOP; vfetch_depth++) {
for (int i = 0; i < ELEMS8_ELEMS4_RATIO; i++) {
const int offset = rowid * VTLANELOOP * ELEMS8_ELEMS4_RATIO +
vfetch_depth * ELEMS8_ELEMS4_RATIO + i;
const int offset1 = offset % ROWS_PER_WARP;
const int offset2 = offset / ROWS_PER_WARP;
// output format is 16 qheads across 16 lanes, 16 head elems spread
// across 4 rows
tmp_out = gcn_mfma16x16x16_instr<scalar_t, 0, 0, 0>(
Vlocal[vtoken_depth][vhe_depth][vfetch_depth].xy[i],
shared_logits[vtoken_depth][offset2][lane16id][offset1],
tmp_out);
}
}
// KV cache fp8
} else {
for (int vfetch_depth = 0; vfetch_depth < VTLANELOOP; vfetch_depth++) {
_B16x8 Vtmp = Vlocal[vtoken_depth][vhe_depth][vfetch_depth];
// reinterpret V format as 16 elements of 8bits
_B8x16 Vtmp8x16 = *reinterpret_cast<_B8x16*>(&Vtmp);
for (int j = 0; j < ELEMS16_ELEMS8_RATIO; j++) {
_B8x8 Vtmp8x8 = Vtmp8x16.xy[j];
_B16x8 Vlocaltmp = convert_b8x8_custom<scalar_t>(Vtmp8x8);
for (int i = 0; i < ELEMS8_ELEMS4_RATIO; i++) {
const int offset =
rowid * ELEMS16_ELEMS8_RATIO * ELEMS8_ELEMS4_RATIO +
j * ELEMS8_ELEMS4_RATIO + i;
const int offset1 = offset % ROWS_PER_WARP;
const int offset2 = offset / ROWS_PER_WARP;
// output format is 16 qheads across 16 lanes, 16 head elems
// spread across 4 rows
tmp_out = gcn_mfma16x16x16_instr<scalar_t, 0, 0, 0>(
Vlocaltmp.xy[i],
shared_logits[vtoken_depth][offset2][lane16id][offset1],
tmp_out);
}
}
}
}
}
// apply post Softmax V mfma v_scale
if constexpr (KV_DTYPE != vllm::Fp8KVCacheDataType::kAuto) {
tmp_out *= *v_scale;
}
outelems[vhe_depth] = from_floatx4<scalar_t>(tmp_out);
}
__syncthreads();
// store Softmax-V mfma output to shared mem
for (int vhe_depth = 0; vhe_depth < VHELOOP; vhe_depth++) {
// lane16 id head dimension; rowid head element dimension
shared_logits[warpid][vhe_depth][lane16id][rowid] = outelems[vhe_depth];
}
__syncthreads();
// write to tmp_out with coalesced writes after reading from shared mem
if (warpid == 0) {
_B16x8 vout[GQA_RATIO4];
// each lane writes out 16Bytes of tmp_out along head elem dimension
const int head_elem_idx = lane16id * 8;
if (head_elem_idx < HEAD_SIZE) {
for (int h = 0; h < GQA_RATIO4; h++) {
const int local_head_idx = 4 * h + rowid;
const int offset1 = (head_elem_idx / 16) % 4;
const int offset2 = head_elem_idx / 16 / NWARPS;
const int offset3 = (head_elem_idx / 4) % 4;
for (int i = 0; i < 2; i++) {
vout[h].xy[i] =
shared_logits[offset1][offset2][local_head_idx][offset3 + i];
}
}
const int64_t hsz_maxp_mult =
static_cast<int64_t>(HEAD_SIZE * max_num_partitions);
scalar_t* out_ptr = out + seq_idx * total_num_heads * hsz_maxp_mult +
partition_idx * HEAD_SIZE;
for (int h = 0; h < GQA_RATIO4; h++) {
const int local_head_idx = 4 * h + rowid;
if (local_head_idx < GQA_RATIO) {
const int64_t out_head_idx =
static_cast<int64_t>(wg_start_head_idx + local_head_idx);
scalar_t* out_ptr2 = out_ptr + out_head_idx * hsz_maxp_mult;
scalar_t* out_ptr3 = out_ptr2 + head_elem_idx;
_B16x8* out_ptr_B16x8 = reinterpret_cast<_B16x8*>(out_ptr3);
*out_ptr_B16x8 = vout[h];
}
}
}
}
}
// grid (num_seqs, num_partitions, num_kv_heads)
// block (256 : partition size)
// each WG handles 1 partition per sequence
// clang-format off
template <typename scalar_t, typename cache_t,
vllm::Fp8KVCacheDataType KV_DTYPE, typename OUTT, int BLOCK_SIZE,
int HEAD_SIZE, int NUM_THREADS, bool ALIBI_ENABLED,
int GQA_RATIO>
__global__
__launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma4_kernel(
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads,
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride,
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions, head_size]
OUTT* __restrict__ final_out, // [num_seqs, num_heads, head_size]
int max_ctx_blocks, const float* k_scale, const float* v_scale) {
// clang-format on
constexpr int NWARPS = NUM_THREADS / WARP_SIZE;
const auto warpid = threadIdx.x / WARP_SIZE;
const auto laneid = threadIdx.x % WARP_SIZE;
const int lane4id = laneid % 4;
const auto seq_idx = blockIdx.x;
// NOTE queries with sequence len > 1 are prefills and taken care by another
// kernel.
if (query_start_loc_ptr != nullptr &&
(query_start_loc_ptr[seq_idx + 1] - query_start_loc_ptr[seq_idx] != 1)) {
return;
}
const auto partition_idx = blockIdx.y;
const auto partition_size = blockDim.x;
const auto max_num_partitions = gridDim.y;
const int context_len = context_lens[seq_idx];
const int partition_start_token_idx = partition_idx * partition_size;
// exit if partition is out of context for seq
if (partition_start_token_idx >= context_len) {
return;
}
// every 4 lanes fetch 4 different qheads
// qhloop = num loops over qhead dimension
constexpr int QHLOOP = DIVIDE_ROUND_UP(GQA_RATIO, 4);
constexpr int GQA_RATIO4 = 4 * QHLOOP;
__shared__ float shared_qk_max[NWARPS][GQA_RATIO4 + 1];
__shared__ float shared_exp_sum[NWARPS][GQA_RATIO4 + 1];
_B16x8 Qlocal[QHLOOP];
constexpr int x = 16 / sizeof(scalar_t);
// kheloop = num loops over head_size for 16Bytes of Q/dequantized K elements
constexpr int KHELOOP = HEAD_SIZE / x;
_B16x8 Klocal[KHELOOP];
_B8x8 Klocalb8[KHELOOP];
// for SoftMax-V Gemm, V head_size dimension is distributed across warp
// vheloop = num loops to cover v head size dimension
constexpr int VHELOOP = HEAD_SIZE / WARP_SIZE;
// softmax out has warp_size tokens across warp
// vtloop = num loops to cover warp_size(64) tokens with 16Bytes of
// dequantized V elements
constexpr int VTLOOP = WARP_SIZE / 8;
// num vblocks to cover warp_size(64) v elements
constexpr int VBLOCKS = 8 * VTLOOP / BLOCK_SIZE;
int vphysical_blocks[VBLOCKS];
_B16x8 Vlocal[VHELOOP][VTLOOP];
_B8x8 Vlocalb8[VHELOOP][VTLOOP];
floatx4 d_out[QHLOOP];
float qk_max[QHLOOP];
__shared__ _B16x4 vout_shared[QHLOOP][VHELOOP][WARP_SIZE][NWARPS + 1];
for (int h = 0; h < QHLOOP; h++) {
d_out[h] = {0};
qk_max[h] = -FLT_MAX;
}
const auto wg_start_head_idx = blockIdx.z * GQA_RATIO;
const auto wg_start_kv_head_idx = blockIdx.z;
const int warp_start_token_idx =
partition_start_token_idx + warpid * WARP_SIZE;
if (warp_start_token_idx >= context_len) { // warp out of context
#pragma unroll
for (int h = 0; h < GQA_RATIO4; h++) {
shared_qk_max[warpid][h] = -FLT_MAX;
shared_exp_sum[warpid][h] = 0.0f;
}
} else { // warp within context
const int num_context_blocks = DIVIDE_ROUND_UP(context_len, BLOCK_SIZE);
const int last_ctx_block = num_context_blocks - 1;
const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
// token id within partition
const auto local_token_idx = threadIdx.x;
// token id within sequence
const int global_token_idx = partition_start_token_idx + local_token_idx;
// fetch block number for k
const int block_idx = (global_token_idx < context_len)
? global_token_idx / BLOCK_SIZE
: last_ctx_block;
// fetch k physical block number
// int32 physical_block_number leads to overflow when multiplied with
// kv_block_stride
const int64_t physical_block_number =
static_cast<int64_t>(block_table[block_idx]);
// fetch vphysical block numbers up front
const int warp_start_block_idx = warp_start_token_idx / BLOCK_SIZE;
for (int b = 0; b < VBLOCKS; b++) {
const int vblock_idx = warp_start_block_idx + b;
const int vblock_idx_ctx =
(vblock_idx <= last_ctx_block) ? vblock_idx : last_ctx_block;
vphysical_blocks[b] = block_table[vblock_idx_ctx];
}
// fetch q elements
// every 4 lanes fetch 8 elems, so warp fetches 8*16 = 128 elemsc
const int64_t query_start_off = static_cast<int64_t>(
query_start_loc_ptr ? query_start_loc_ptr[seq_idx] : seq_idx);
const scalar_t* q_ptr =
q + query_start_off * q_stride + wg_start_head_idx * HEAD_SIZE;
const _B16x8* q_ptrh8 = reinterpret_cast<const _B16x8*>(q_ptr);
const int qhead_elemh8 = laneid / 4;
for (int h = 0; h < QHLOOP - 1; h++) {
const int qhead_idx = h * 4 + lane4id;
Qlocal[h] = q_ptrh8[qhead_idx * HEAD_SIZE / 8 + qhead_elemh8];
}
const int final_qhead_idx = 4 * (QHLOOP - 1) + lane4id;
if (final_qhead_idx < GQA_RATIO) {
Qlocal[QHLOOP - 1] =
q_ptrh8[final_qhead_idx * HEAD_SIZE / 8 + qhead_elemh8];
} else {
Qlocal[QHLOOP - 1].xy[0] = {0};
Qlocal[QHLOOP - 1].xy[1] = {0};
}
// fetch k elements
const cache_t* k_ptr = k_cache + physical_block_number * kv_block_stride +
wg_start_kv_head_idx * kv_head_stride;
// physical_block_offset is already cast in terms of _B16x8
const int physical_block_offset = local_token_idx % BLOCK_SIZE;
// each K fetch is for 8 elements of cache_t which are later dequantized to
// scalar_t for fp8
if constexpr (KV_DTYPE == vllm::Fp8KVCacheDataType::kAuto) {
const _B16x8* k_ptrh8 = reinterpret_cast<const _B16x8*>(k_ptr);
for (int d = 0; d < KHELOOP; d++) {
Klocal[d] = k_ptrh8[d * BLOCK_SIZE + physical_block_offset];
}
} else {
// vllm defines X as 16 Bytes of elements of cache_t
constexpr int X = 16 / sizeof(cache_t);
const cache_t* k_ptr2 = k_ptr + physical_block_offset * X;
for (int d = 0; d < KHELOOP; d++) {
const int head_elem = d * 8;
const int offset1 = head_elem / X;
const int offset2 = head_elem % X;
const cache_t* k_ptr3 = k_ptr2 + offset1 * BLOCK_SIZE * X + offset2;
Klocalb8[d] = *reinterpret_cast<const _B8x8*>(k_ptr3);
}
}
// optional alibi fetch
float alibi_slope[QHLOOP];
if constexpr (ALIBI_ENABLED) {
for (int h = 0; h < QHLOOP; h++) {
const int qhead_idx = h * 4 + lane4id;
alibi_slope[h] = (qhead_idx < GQA_RATIO)
? alibi_slopes[wg_start_head_idx + qhead_idx]
: 0.f;
}
}
const cache_t* v_ptr = v_cache + wg_start_kv_head_idx * kv_head_stride;
// fetch vcache in kv cache auto case
if constexpr (KV_DTYPE == vllm::Fp8KVCacheDataType::kAuto) {
const _B16x8* v_ptrh8 = reinterpret_cast<const _B16x8*>(v_ptr);
// iterate over each v block
for (int b = 0; b < VBLOCKS; b++) {
// int32 physical_block_number leads to overflow when multiplied with
// kv_block_stride
const int64_t vphysical_block_number =
static_cast<int64_t>(vphysical_blocks[b]);
const _B16x8* v_ptrh8b =
v_ptrh8 + (vphysical_block_number * kv_block_stride) / 8;
// iterate over each head elem (within head_size)
for (int h = 0; h < VHELOOP; h++) {
const int head_size_elem = h * WARP_SIZE + laneid;
const _B16x8* v_ptrh8be = v_ptrh8b + head_size_elem * BLOCK_SIZE / 8;
// iterate over all velems within block
for (int d = 0; d < BLOCK_SIZE / 8; d++) {
Vlocal[h][b * BLOCK_SIZE / 8 + d] = v_ptrh8be[d];
}
}
}
} // if constexpr (KV_DTYPE == vllm::Fp8KVCacheDataType::kAuto)
// fetch vcache in fp8 case
else { // if constexpr (KV_DTYPE != vllm::Fp8KVCacheDataType::kAuto)
const _B8x8* v_ptrh8 = reinterpret_cast<const _B8x8*>(v_ptr);
// iterate over each v block
for (int b = 0; b < VBLOCKS; b++) {
// int32 physical_block_number leads to overflow when multiplied with
// kv_block_stride
const int64_t vphysical_block_number =
static_cast<int64_t>(vphysical_blocks[b]);
const _B8x8* v_ptrh8b =
v_ptrh8 + (vphysical_block_number * kv_block_stride) / 8;
// iterate over each head elem (within head_size)
for (int h = 0; h < VHELOOP; h++) {
const int head_size_elem = h * WARP_SIZE + laneid;
const _B8x8* v_ptrh8be = v_ptrh8b + head_size_elem * BLOCK_SIZE / 8;
// iterate over all velems within block
for (int d = 0; d < BLOCK_SIZE / 8; d++) {
Vlocalb8[h][b * BLOCK_SIZE / 8 + d] = v_ptrh8be[d];
}
}
}
}
#define QK_mfma(x) \
if constexpr (KV_DTYPE != vllm::Fp8KVCacheDataType::kAuto) { \
Klocal[x] = convert_b8x8_custom<scalar_t>(Klocalb8[x]); \
} \
for (int h = 0; h < QHLOOP; h++) { \
d_out[h] = gcn_mfma4x4x4_instr<scalar_t, 4, x, 0>( \
Qlocal[h].xy[0], Klocal[x].xy[0], d_out[h]); \
d_out[h] = gcn_mfma4x4x4_instr<scalar_t, 4, x, 0>( \
Qlocal[h].xy[1], Klocal[x].xy[1], d_out[h]); \
}
// QK mfma with Q mfma block broadcast
// Q values across head_size dimension stored across lanes
// K values across head_size dimension are stored depthwise within lane
// Q broadcast with absz, cbid of mfma instruction
QK_mfma(0);
QK_mfma(1);
QK_mfma(2);
QK_mfma(3);
QK_mfma(4);
QK_mfma(5);
QK_mfma(6);
QK_mfma(7);
// below only needed for head size 128
if constexpr (KHELOOP > 8) {
QK_mfma(8);
QK_mfma(9);
QK_mfma(10);
QK_mfma(11);
QK_mfma(12);
QK_mfma(13);
QK_mfma(14);
QK_mfma(15);
}
#undef QK_mfma
float scale2 = scale;
if constexpr (KV_DTYPE != vllm::Fp8KVCacheDataType::kAuto) {
// post mfma scaling for fp8
scale2 *= *k_scale;
}
for (int h = 0; h < QHLOOP; h++) {
d_out[h] *= scale2;
}
// transpose d_out so that 4 token ids are in each lane, and 4 heads are
// across 4 lanes
for (int h = 0; h < QHLOOP; h++) {
floatx4 tmp = {0};
for (int i = 0; i < 4; i++) {
const float B = (lane4id == i) ? 1.0f : 0.0f;
tmp = __builtin_amdgcn_mfma_f32_4x4x1f32(d_out[h][i], B, tmp, 0, 0, 0);
}
d_out[h] = tmp;
}
const int lane4_token_idx = 4 * (global_token_idx >> 2);
if constexpr (ALIBI_ENABLED) {
const int alibi_offset = lane4_token_idx - context_len + 1;
for (int h = 0; h < QHLOOP; h++) {
for (int i = 0; i < 4; i++) {
d_out[h][i] += alibi_slope[h] * (alibi_offset + i);
}
}
}
const int bpermute_mask = 4 * (16 * ((laneid >> 2) % 4) + lane4id);
for (int h = 0; h < QHLOOP; h++) {
qk_max[h] = -FLT_MAX;
for (int i = 0; i < 4; i++) {
qk_max[h] = (lane4_token_idx + i < context_len)
? fmaxf(qk_max[h], d_out[h][i])
: qk_max[h];
}
// for (int mask = WARP_SIZE / 2; mask >= 4; mask /= 2) {
// qk_max[h] = fmaxf(qk_max[h], __shfl_xor(qk_max[h], mask));
// }
// faster version of above code with dpp
asm("v_nop\n v_nop\n v_max_f32_dpp %0, %1, %2 row_ror:4"
: "=v"(qk_max[h])
: "v"(qk_max[h]), "v"(qk_max[h]));
asm("v_nop\n v_nop\n v_max_f32_dpp %0, %1, %2 row_ror:8"
: "=v"(qk_max[h])
: "v"(qk_max[h]), "v"(qk_max[h]));
auto tmp = __builtin_amdgcn_ds_bpermute(
bpermute_mask, *reinterpret_cast<int*>(&qk_max[h]));
qk_max[h] = *reinterpret_cast<float*>(&tmp);
asm("v_nop\n v_nop\n v_max_f32_dpp %0, %1, %2 row_ror:4"
: "=v"(qk_max[h])
: "v"(qk_max[h]), "v"(qk_max[h]));
asm("v_nop\n v_nop\n v_max_f32_dpp %0, %1, %2 row_ror:8"
: "=v"(qk_max[h])
: "v"(qk_max[h]), "v"(qk_max[h]));
}
float exp_sum[QHLOOP];
for (int h = 0; h < QHLOOP; h++) {
exp_sum[h] = 0.0f;
for (int i = 0; i < 4; i++) {
d_out[h][i] = (lane4_token_idx + i < context_len)
? __expf(d_out[h][i] - qk_max[h])
: 0.0f;
exp_sum[h] += d_out[h][i];
}
// for (int mask = WARP_SIZE / 2; mask >= 4; mask /= 2) {
// exp_sum[h] += __shfl_xor(exp_sum[h], mask);
// }
// faster version of above code with dpp
asm("v_nop\n v_nop\n v_add_f32_dpp %0, %1, %2 row_ror:4"
: "=v"(exp_sum[h])
: "v"(exp_sum[h]), "v"(exp_sum[h]));
asm("v_nop\n v_nop\n v_add_f32_dpp %0, %1, %2 row_ror:8"
: "=v"(exp_sum[h])
: "v"(exp_sum[h]), "v"(exp_sum[h]));
auto tmp = __builtin_amdgcn_ds_bpermute(
bpermute_mask, *reinterpret_cast<int*>(&exp_sum[h]));
exp_sum[h] = *reinterpret_cast<float*>(&tmp);
asm("v_nop\n v_nop\n v_add_f32_dpp %0, %1, %2 row_ror:4"
: "=v"(exp_sum[h])
: "v"(exp_sum[h]), "v"(exp_sum[h]));
asm("v_nop\n v_nop\n v_add_f32_dpp %0, %1, %2 row_ror:8"
: "=v"(exp_sum[h])
: "v"(exp_sum[h]), "v"(exp_sum[h]));
}
if (laneid < 4) {
for (int h = 0; h < QHLOOP; h++) {
const int head_idx = 4 * h + lane4id;
shared_qk_max[warpid][head_idx] = qk_max[h];
shared_exp_sum[warpid][head_idx] = exp_sum[h];
}
}
} // warp within context
__syncthreads();
const auto num_heads = gridDim.z * GQA_RATIO;
float* max_logits_ptr =
max_logits + seq_idx * num_heads * max_num_partitions + partition_idx;
float* exp_sums_ptr =
exp_sums + seq_idx * num_heads * max_num_partitions + partition_idx;
// calculate qk_max and exp_sums for partition
for (int h = 0; h < QHLOOP; h++) {
float global_qk_max = -FLT_MAX;
float warp_qk_max[NWARPS];
const int head_idx = 4 * h + lane4id;
for (int w = 0; w < NWARPS; w++) {
warp_qk_max[w] = shared_qk_max[w][head_idx];
global_qk_max = fmaxf(global_qk_max, warp_qk_max[w]);
}
float global_exp_sum = 0.0f;
for (int w = 0; w < NWARPS; w++) {
global_exp_sum +=
shared_exp_sum[w][head_idx] * __expf(warp_qk_max[w] - global_qk_max);
}
if (head_idx < GQA_RATIO) {
max_logits_ptr[(wg_start_head_idx + head_idx) * max_num_partitions] =
global_qk_max;
exp_sums_ptr[(wg_start_head_idx + head_idx) * max_num_partitions] =
global_exp_sum;
}
const float global_inv_sum_scale = __fdividef(1.f, global_exp_sum + 1e-6f) *
__expf(qk_max[h] - global_qk_max);
d_out[h] *= global_inv_sum_scale;
}
constexpr bool LOGITS_RTZ_CONVERSION = false;
// logits[h] -> every 4 lanes hold 4 heads, each lane holds 4 tokens, there
// are 4x16 tokens across warp
_B16x4 logits[QHLOOP];
for (int h = 0; h < QHLOOP; h++) {
if constexpr (LOGITS_RTZ_CONVERSION) {
// use rtz for faster performance with no perceivable accuracy loss
logits[h] = from_floatx4_rtz<scalar_t>(d_out[h]);
} else {
logits[h] = from_floatx4<scalar_t>(d_out[h]);
}
}
if (warp_start_token_idx >= context_len) { // warp out of context
for (int qh = 0; qh < QHLOOP; qh++) {
for (int vh = 0; vh < VHELOOP; vh++) {
vout_shared[qh][vh][laneid][warpid] = {0};
}
}
} else { // warp in context
#define SV_mfma(x) \
if constexpr (KV_DTYPE != vllm::Fp8KVCacheDataType::kAuto) { \
Vlocal[vh][x] = convert_b8x8_custom<scalar_t>(Vlocalb8[vh][x]); \
} \
for (int qh = 0; qh < QHLOOP; qh++) { \
acc[qh] = gcn_mfma4x4x4_instr<scalar_t, 4, 2 * x, 0>( \
logits[qh], Vlocal[vh][x].xy[0], acc[qh]); \
acc[qh] = gcn_mfma4x4x4_instr<scalar_t, 4, 2 * x + 1, 0>( \
logits[qh], Vlocal[vh][x].xy[1], acc[qh]); \
}
for (int vh = 0; vh < VHELOOP; vh++) {
floatx4 acc[QHLOOP];
for (int qh = 0; qh < QHLOOP; qh++) {
acc[qh] = {0};
}
// SoftMax-V calculation
// logits -> token dimension is distributed across lanes
// Vlocal -> token dimension is depthwise within lane
// uses mfma instruction block broadcast for logits
SV_mfma(0);
SV_mfma(1);
SV_mfma(2);
SV_mfma(3);
SV_mfma(4);
SV_mfma(5);
SV_mfma(6);
SV_mfma(7);
for (int qh = 0; qh < QHLOOP; qh++) {
if constexpr (KV_DTYPE != vllm::Fp8KVCacheDataType::kAuto) {
// post mfma v scale for fp8
acc[qh] *= *v_scale;
}
vout_shared[qh][vh][laneid][warpid] = from_floatx4<scalar_t>(acc[qh]);
}
}
#undef SV_mfma
} // warp in context
__syncthreads();
// final write to tmp_out after vout accumulation
if (warpid == 0) {
_B16x4 vout[QHLOOP][VHELOOP];
// iterate across heads
for (int qh = 0; qh < QHLOOP; qh++) {
// iterate over each v head elem (within head_size)
for (int vh = 0; vh < VHELOOP; vh++) {
vout[qh][vh] = {0};
for (int w = 0; w < NWARPS; w++) {
vout[qh][vh] =
addx4<scalar_t>(vout[qh][vh], vout_shared[qh][vh][laneid][w]);
}
}
}
scalar_t* out_ptr = out +
seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
partition_idx * HEAD_SIZE;
const int out_num_partitions = max_num_partitions;
bit16_t* out_ptr_b16 = reinterpret_cast<bit16_t*>(out_ptr);
for (int qh = 0; qh < QHLOOP; qh++) {
for (int vh = 0; vh < VHELOOP; vh++) {
const int head_size_elem = vh * WARP_SIZE + laneid;
for (int i = 0; i < 4; i++) {
const int head_idx = 4 * qh + i;
if (head_idx < GQA_RATIO) {
out_ptr_b16[(wg_start_head_idx + head_idx) * out_num_partitions *
HEAD_SIZE +
head_size_elem] = vout[qh][vh][i];
}
}
}
}
} // warpid == 0
}
// Grid: (num_heads, num_seqs).
template <typename scalar_t, typename OUTT, int HEAD_SIZE, int NUM_THREADS,
int PARTITION_SIZE, int NPAR_LOOPS>
__global__
__launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel(
OUTT* __restrict__ out, // [num_seqs, num_heads, head_size]
const float* __restrict__ exp_sums, // [num_seqs, num_heads,
// max_num_partitions]
const float* __restrict__ max_logits, // [num_seqs, num_heads,
// max_num_partitions]
const scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads,
// max_num_partitions, head_size]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_partitions) {
const auto num_heads = gridDim.x;
const auto head_idx = blockIdx.x;
const auto seq_idx = blockIdx.y;
// NOTE queries with sequence len > 1 are prefills and taken care by another
// kernel.
if (query_start_loc_ptr != nullptr &&
(query_start_loc_ptr[seq_idx + 1] - query_start_loc_ptr[seq_idx] != 1)) {
return;
}
const int context_len = context_lens[seq_idx];
const int num_partitions = DIVIDE_ROUND_UP(context_len, PARTITION_SIZE);
[[maybe_unused]] constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
const auto warpid = threadIdx.x / WARP_SIZE;
[[maybe_unused]] const auto laneid = threadIdx.x % WARP_SIZE;
__shared__ float shared_global_exp_sum;
// max num partitions supported is warp_size * NPAR_LOOPS
__shared__ float shared_exp_sums[NPAR_LOOPS * WARP_SIZE];
if (warpid == 0) {
const float* max_logits_ptr = max_logits +
seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions;
// valid partition is the last valid partition in case threadid > num
// partitions
int valid_partition[NPAR_LOOPS];
float reg_max_logit[NPAR_LOOPS];
const int last_valid_partition = num_partitions - 1;
#pragma unroll
for (int i = 0; i < NPAR_LOOPS; i++) {
const auto partition_no = i * WARP_SIZE + threadIdx.x;
valid_partition[i] =
(partition_no < num_partitions) ? partition_no : last_valid_partition;
}
#pragma unroll
for (int i = 0; i < NPAR_LOOPS; i++) {
reg_max_logit[i] = max_logits_ptr[valid_partition[i]];
}
float max_logit = reg_max_logit[0];
#pragma unroll
for (int i = 1; i < NPAR_LOOPS; i++) {
max_logit = fmaxf(max_logit, reg_max_logit[i]);
}
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
max_logit = fmaxf(max_logit, __shfl_xor(max_logit, mask));
}
const float* exp_sums_ptr = exp_sums +
seq_idx * num_heads * max_num_partitions +
head_idx * max_num_partitions;
float rescaled_exp_sum[NPAR_LOOPS];
#pragma unroll
for (int i = 0; i < NPAR_LOOPS; i++) {
rescaled_exp_sum[i] = exp_sums_ptr[valid_partition[i]];
}
#pragma unroll
for (int i = 0; i < NPAR_LOOPS; i++) {
const auto partition_no = i * WARP_SIZE + threadIdx.x;
rescaled_exp_sum[i] *= (partition_no < num_partitions)
? expf(reg_max_logit[i] - max_logit)
: 0.0f;
}
float global_exp_sum = rescaled_exp_sum[0];
#pragma unroll
for (int i = 1; i < NPAR_LOOPS; i++) {
global_exp_sum += rescaled_exp_sum[i];
}
#pragma unroll
for (int i = 0; i < NPAR_LOOPS; i++) {
const auto partition_no = i * WARP_SIZE + threadIdx.x;
shared_exp_sums[partition_no] = rescaled_exp_sum[i];
}
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
global_exp_sum += __shfl_xor(global_exp_sum, mask);
}
if (threadIdx.x == 0) {
shared_global_exp_sum = global_exp_sum;
}
} // warpid == 0
const scalar_t* tmp_out_ptr =
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
head_idx * max_num_partitions * HEAD_SIZE + threadIdx.x;
constexpr int MAX_NPAR = 64;
scalar_t tmps[MAX_NPAR];
const float dzero = 0.0f;
#pragma unroll
for (int j = 0; j < MAX_NPAR; j++) {
tmps[j] = from_float<scalar_t>(dzero);
}
const int last_partition_offset = (num_partitions - 1) * HEAD_SIZE;
const int num_partition_offset = (num_partitions)*HEAD_SIZE;
int idx = 0;
constexpr int JCHUNK = 16;
#pragma unroll
for (int j = 0; j < JCHUNK * HEAD_SIZE; j += HEAD_SIZE) {
// lastj is last valid partition
const int lastj_offset =
(j < num_partition_offset) ? j : last_partition_offset;
tmps[idx] = tmp_out_ptr[lastj_offset];
idx++;
}
__syncthreads();
if (num_partitions > JCHUNK) {
#pragma unroll
for (int j = JCHUNK * HEAD_SIZE; j < 2 * JCHUNK * HEAD_SIZE;
j += HEAD_SIZE) {
const int lastj_offset =
(j < num_partition_offset) ? j : last_partition_offset;
tmps[idx] = tmp_out_ptr[lastj_offset];
idx++;
}
if (num_partitions > 2 * JCHUNK) {
#pragma unroll
for (int j = 2 * JCHUNK * HEAD_SIZE; j < MAX_NPAR * HEAD_SIZE;
j += HEAD_SIZE) {
const int lastj_offset =
(j < num_partition_offset) ? j : last_partition_offset;
tmps[idx] = tmp_out_ptr[lastj_offset];
idx++;
}
}
} // num_partitions > JCHUNK
// Aggregate tmp_out to out.
float acc = 0.0f;
#pragma unroll
for (int j = 0; j < JCHUNK; j++) {
acc += to_float<scalar_t>(tmps[j]) * shared_exp_sums[j];
}
if (num_partitions > JCHUNK) {
#pragma unroll
for (int j = JCHUNK; j < 2 * JCHUNK; j++) {
acc += to_float<scalar_t>(tmps[j]) * shared_exp_sums[j];
}
if (num_partitions > 2 * JCHUNK) {
#pragma unroll
for (int j = 2 * JCHUNK; j < MAX_NPAR; j++) {
acc += to_float<scalar_t>(tmps[j]) * shared_exp_sums[j];
}
}
}
for (int p = 1; p < NPAR_LOOPS; p++) {
if (num_partitions > p * MAX_NPAR) {
idx = 0;
#pragma unroll
for (int j = p * MAX_NPAR * HEAD_SIZE; j < (p + 1) * MAX_NPAR * HEAD_SIZE;
j += HEAD_SIZE) {
// lastj is last valid partition
const int lastj_offset =
(j < num_partition_offset) ? j : last_partition_offset;
tmps[idx] = tmp_out_ptr[lastj_offset];
idx++;
}
#pragma unroll
for (int j = 0; j < MAX_NPAR; j++) {
acc += to_float<scalar_t>(tmps[j]) * shared_exp_sums[j + p * MAX_NPAR];
}
}
}
const float inv_global_exp_sum =
__fdividef(1.0f, shared_global_exp_sum + 1e-6f);
acc *= inv_global_exp_sum;
const int64_t query_start_off = static_cast<int64_t>(
query_start_loc_ptr ? query_start_loc_ptr[seq_idx] : seq_idx);
OUTT* out_ptr = out + query_start_off * num_heads * HEAD_SIZE +
static_cast<int64_t>(head_idx) * HEAD_SIZE;
if constexpr (std::is_same<OUTT, bit8_t>::value) {
out_ptr[threadIdx.x] =
__hip_cvt_float_to_fp8(acc, vllm::fp8::fp8_type::__default_saturation,
vllm::fp8::fp8_type::__default_interpret);
} else {
out_ptr[threadIdx.x] = from_float<scalar_t>(acc);
}
}
#else // !defined(__HIP__MI300_MI250__) TODO: Add NAVI support
// clang-format off
template <typename scalar_t, typename cache_t,
vllm::Fp8KVCacheDataType KV_DTYPE, typename OUTT, int BLOCK_SIZE,
int HEAD_SIZE, int NUM_THREADS, bool ALIBI_ENABLED,
int GQA_RATIO>
__global__
__launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma16_kernel(
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads,
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride,
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions, head_size]
OUTT* __restrict__ final_out, // [num_seqs, num_heads, head_size]
int max_ctx_blocks, const float* k_scale, const float* v_scale) {
UNREACHABLE_CODE
}
template <typename scalar_t, typename cache_t,
vllm::Fp8KVCacheDataType KV_DTYPE, typename OUTT, int BLOCK_SIZE,
int HEAD_SIZE, int NUM_THREADS, bool ALIBI_ENABLED,
int GQA_RATIO>
__global__
__launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_QKV_mfma4_kernel(
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
const cache_t* __restrict__ k_cache, // [num_blocks, num_kv_heads, head_size/x, block_size, x]
const cache_t* __restrict__ v_cache, // [num_blocks, num_kv_heads, head_size, block_size]
const int num_kv_heads,
const float scale,
const int* __restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_blocks_per_seq,
const float* __restrict__ alibi_slopes, // [num_heads]
const int q_stride,
const int kv_block_stride,
const int kv_head_stride,
float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
scalar_t* __restrict__ out, // [num_seqs, num_heads, max_num_partitions, head_size]
OUTT* __restrict__ final_out, // [num_seqs, num_heads, head_size]
int max_ctx_blocks, const float* k_scale, const float* v_scale) {
UNREACHABLE_CODE
}
// Grid: (num_heads, num_seqs).
template <typename scalar_t, typename OUTT, int HEAD_SIZE, int NUM_THREADS,
int PARTITION_SIZE, int NPAR_LOOPS>
__global__
__launch_bounds__(NUM_THREADS) void paged_attention_ll4mi_reduce_kernel(
OUTT* __restrict__ out, // [num_seqs, num_heads, head_size]
const float* __restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
const float* __restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
const scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
const int* __restrict__ context_lens, // [num_seqs]
const int* __restrict__ query_start_loc_ptr, // [num_seqs]
const int max_num_partitions) {
UNREACHABLE_CODE
}
// clang-format on
#endif // defined(__HIP__MI300_MI250__) TODO: Add NAVI support
#define LAUNCH_CUSTOM_ATTENTION_MFMA16(GQA_RATIO) \
paged_attention_ll4mi_QKV_mfma16_kernel<T, KVT, KV_DTYPE, OUTT, BLOCK_SIZE, \
HEAD_SIZE, NTHR, ALIBI_ENABLED, \
GQA_RATIO> \
<<<grid, block, 0, stream>>>( \
query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
block_tables_ptr, context_lens_ptr, query_start_loc_ptr, \
max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, kv_block_stride, \
kv_head_stride, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, out_ptr, \
max_ctx_blocks, k_scale_ptr, v_scale_ptr);
#define LAUNCH_CUSTOM_ATTENTION_MFMA4(GQA_RATIO) \
paged_attention_ll4mi_QKV_mfma4_kernel<T, KVT, KV_DTYPE, OUTT, BLOCK_SIZE, \
HEAD_SIZE, NTHR, ALIBI_ENABLED, \
GQA_RATIO> \
<<<grid, block, 0, stream>>>( \
query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
block_tables_ptr, context_lens_ptr, query_start_loc_ptr, \
max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, kv_block_stride, \
kv_head_stride, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, out_ptr, \
max_ctx_blocks, k_scale_ptr, v_scale_ptr);
#define LAUNCH_CUSTOM_REDUCTION(NPAR_LOOPS) \
paged_attention_ll4mi_reduce_kernel<T, OUTT, HEAD_SIZE, HEAD_SIZE, \
PARTITION_SIZE, NPAR_LOOPS> \
<<<reduce_grid, reduce_block, 0, stream>>>( \
out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, \
context_lens_ptr, query_start_loc_ptr, max_num_partitions);
template <typename T, typename KVT, vllm::Fp8KVCacheDataType KV_DTYPE,
int BLOCK_SIZE, int HEAD_SIZE, typename OUTT, int PARTITION_SIZE_OLD,
bool ALIBI_ENABLED>
void paged_attention_custom_launcher(
torch::Tensor& out, torch::Tensor& exp_sums, torch::Tensor& max_logits,
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
torch::Tensor& value_cache, const int num_kv_heads, float scale,
torch::Tensor& block_tables, torch::Tensor& context_lens,
const std::optional<torch::Tensor>& query_start_loc, int max_context_len,
const std::optional<torch::Tensor>& alibi_slopes, torch::Tensor& k_scale,
torch::Tensor& v_scale) {
int num_seqs = block_tables.size(0);
int num_heads = query.size(1);
int head_size = query.size(2);
int max_num_blocks_per_seq = block_tables.size(1);
int q_stride = query.stride(0);
int kv_block_stride = key_cache.stride(0);
int kv_head_stride = key_cache.stride(1);
// NOTE: query start location is optional for V0 decode should not be used.
// If batch contains mix of prefills and decode, prefills should be skipped.
const int* query_start_loc_ptr =
query_start_loc
? reinterpret_cast<const int*>(query_start_loc.value().data_ptr())
: nullptr;
// NOTE: alibi_slopes is optional.
const float* alibi_slopes_ptr =
alibi_slopes
? reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
: nullptr;
float* exp_sums_ptr = reinterpret_cast<float*>(exp_sums.data_ptr());
float* max_logits_ptr = reinterpret_cast<float*>(max_logits.data_ptr());
T* tmp_out_ptr = reinterpret_cast<T*>(tmp_out.data_ptr());
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
KVT* key_cache_ptr = reinterpret_cast<KVT*>(key_cache.data_ptr());
KVT* value_cache_ptr = reinterpret_cast<KVT*>(value_cache.data_ptr());
int* block_tables_ptr = block_tables.data_ptr<int>();
int* context_lens_ptr = context_lens.data_ptr<int>();
const float* k_scale_ptr = reinterpret_cast<const float*>(k_scale.data_ptr());
const float* v_scale_ptr = reinterpret_cast<const float*>(v_scale.data_ptr());
OUTT* out_ptr = reinterpret_cast<OUTT*>(out.data_ptr());
const int max_ctx_blocks = DIVIDE_ROUND_UP(max_context_len, BLOCK_SIZE);
// partition size is fixed at 256 since both mfma4 and mfma16 kernels support
// it mfma4 kernel also supports partition size 512
constexpr int PARTITION_SIZE = 256;
const int max_num_partitions =
DIVIDE_ROUND_UP(max_context_len, PARTITION_SIZE);
const int gqa_ratio = num_heads / num_kv_heads;
assert(num_heads % num_kv_heads == 0);
assert(head_size == HEAD_SIZE);
constexpr int NTHR = 256;
dim3 grid(num_seqs, max_num_partitions, num_kv_heads);
dim3 block(NTHR);
const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// mfma4 kernel is faster than mfma16 for gqa_ratio <= 4
switch (gqa_ratio) {
case 1:
LAUNCH_CUSTOM_ATTENTION_MFMA4(1);
break;
case 2:
LAUNCH_CUSTOM_ATTENTION_MFMA4(2);
break;
case 3:
LAUNCH_CUSTOM_ATTENTION_MFMA4(3);
break;
case 4:
LAUNCH_CUSTOM_ATTENTION_MFMA4(4);
break;
case 5:
LAUNCH_CUSTOM_ATTENTION_MFMA16(5);
break;
case 6:
LAUNCH_CUSTOM_ATTENTION_MFMA16(6);
break;
case 7:
LAUNCH_CUSTOM_ATTENTION_MFMA16(7);
break;
case 8:
LAUNCH_CUSTOM_ATTENTION_MFMA16(8);
break;
case 9:
LAUNCH_CUSTOM_ATTENTION_MFMA16(9);
break;
case 10:
LAUNCH_CUSTOM_ATTENTION_MFMA16(10);
break;
case 11:
LAUNCH_CUSTOM_ATTENTION_MFMA16(11);
break;
case 12:
LAUNCH_CUSTOM_ATTENTION_MFMA16(12);
break;
case 13:
LAUNCH_CUSTOM_ATTENTION_MFMA16(13);
break;
case 14:
LAUNCH_CUSTOM_ATTENTION_MFMA16(14);
break;
case 15:
LAUNCH_CUSTOM_ATTENTION_MFMA16(15);
break;
case 16:
LAUNCH_CUSTOM_ATTENTION_MFMA16(16);
break;
default:
TORCH_CHECK(false, "Unsupported gqa ratio: ", gqa_ratio);
break;
}
dim3 reduce_grid(num_heads, num_seqs);
dim3 reduce_block(head_size);
const int npar_loops = DIVIDE_ROUND_UP(max_num_partitions, WARP_SIZE);
// reduction kernel supports upto 8 NPAR_loops * 64 (warp_size) * 256
// (partition size) = 128K context length
switch (npar_loops) {
case 1:
LAUNCH_CUSTOM_REDUCTION(1);
break;
case 2:
LAUNCH_CUSTOM_REDUCTION(2);
break;
case 3:
LAUNCH_CUSTOM_REDUCTION(3);
break;
case 4:
LAUNCH_CUSTOM_REDUCTION(4);
break;
case 5:
LAUNCH_CUSTOM_REDUCTION(5);
break;
case 6:
LAUNCH_CUSTOM_REDUCTION(6);
break;
case 7:
LAUNCH_CUSTOM_REDUCTION(7);
break;
case 8:
LAUNCH_CUSTOM_REDUCTION(8);
break;
default:
TORCH_CHECK(false, "Unsupported npar_loops: ", npar_loops);
break;
}
}
#define CALL_CUSTOM_LAUNCHER(T, KVT, KV_DTYPE, BLK_SIZE, HEAD_SIZE, PSIZE, \
ALIBI_ENABLED) \
paged_attention_custom_launcher<T, KVT, KV_DTYPE, BLK_SIZE, HEAD_SIZE, T, \
PSIZE, ALIBI_ENABLED>( \
out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
num_kv_heads, scale, block_tables, context_lens, query_start_loc, \
max_context_len, alibi_slopes, k_scale, v_scale);
#define CALL_CUSTOM_LAUNCHER_ALIBI(T, KVT, KV_DTYPE, BLK_SIZE, HEAD_SIZE, \
PSIZE) \
if (alibi_slopes) { \
CALL_CUSTOM_LAUNCHER(T, KVT, KV_DTYPE, BLK_SIZE, HEAD_SIZE, PSIZE, true); \
} else { \
CALL_CUSTOM_LAUNCHER(T, KVT, KV_DTYPE, BLK_SIZE, HEAD_SIZE, PSIZE, false); \
}
#define CALL_CUSTOM_LAUNCHER_BLK(T, KVT, KV_DTYPE, HEAD_SIZE) \
switch (block_size) { \
case 16: \
CALL_CUSTOM_LAUNCHER_ALIBI(T, KVT, KV_DTYPE, 16, HEAD_SIZE, 256); \
break; \
case 32: \
CALL_CUSTOM_LAUNCHER_ALIBI(T, KVT, KV_DTYPE, 32, HEAD_SIZE, 256); \
break; \
default: \
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
break; \
}
#define CALL_CUSTOM_LAUNCHER_BLK_HEAD(T, KVT, KV_DTYPE) \
switch (head_size) { \
case 64: \
CALL_CUSTOM_LAUNCHER_BLK(T, KVT, KV_DTYPE, 64); \
break; \
case 128: \
CALL_CUSTOM_LAUNCHER_BLK(T, KVT, KV_DTYPE, 128); \
break; \
default: \
TORCH_CHECK(false, "Unsupported head size: ", head_size); \
break; \
}
// clang-format off
void paged_attention(
torch::Tensor& out, // [num_seqs, num_heads, head_size]
torch::Tensor& exp_sums, // [num_seqs, num_heads, max_num_partitions]
torch::Tensor& max_logits, // [num_seqs, num_heads, max_num_partitions]
torch::Tensor& tmp_out, // [num_seqs, num_heads, max_num_partitions, head_size]
torch::Tensor& query, // [num_seqs, num_heads, head_size]
torch::Tensor& key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor& value_cache, // [num_blocks, num_heads, head_size, block_size]
int64_t num_kv_heads,
double scale,
torch::Tensor& block_tables, // [num_seqs, max_num_blocks_per_seq]
torch::Tensor& context_lens, // [num_seqs]
const std::optional<torch::Tensor>& query_start_loc, // [num_seqs]
int64_t block_size, int64_t max_context_len,
const std::optional<torch::Tensor>& alibi_slopes,
const std::string& kv_cache_dtype, torch::Tensor& k_scale,
torch::Tensor& v_scale) {
// clang-format on
const int head_size = query.size(2);
if (kv_cache_dtype == "auto") {
if (query.dtype() == at::ScalarType::Half) {
CALL_CUSTOM_LAUNCHER_BLK_HEAD(_Float16, _Float16,
vllm::Fp8KVCacheDataType::kAuto);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_CUSTOM_LAUNCHER_BLK_HEAD(__hip_bfloat16, __hip_bfloat16,
vllm::Fp8KVCacheDataType::kAuto);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else if (kv_cache_dtype == "fp8" || kv_cache_dtype == "fp8_e4m3") {
if (query.dtype() == at::ScalarType::Half) {
CALL_CUSTOM_LAUNCHER_BLK_HEAD(_Float16, uint8_t,
vllm::Fp8KVCacheDataType::kFp8E4M3);
} else if (query.dtype() == at::ScalarType::BFloat16) {
CALL_CUSTOM_LAUNCHER_BLK_HEAD(__hip_bfloat16, uint8_t,
vllm::Fp8KVCacheDataType::kFp8E4M3);
} else {
TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
}
} else {
TORCH_CHECK(false, "Unsupported KV cache dtype: ", kv_cache_dtype);
}
}
#undef WARP_SIZE
#undef MAX
#undef MIN
#undef DIVIDE_ROUND_UP