105 lines
3.8 KiB
ReStructuredText
105 lines
3.8 KiB
ReStructuredText
.. _lora:
|
|
|
|
Using LoRA adapters
|
|
===================
|
|
|
|
This document shows you how to use `LoRA adapters <https://arxiv.org/abs/2106.09685>`_ with vLLM on top of a base model.
|
|
Adapters can be efficiently served on a per request basis with minimal overhead. First we download the adapter(s) and save
|
|
them locally with
|
|
|
|
.. code-block:: python
|
|
|
|
from huggingface_hub import snapshot_download
|
|
|
|
sql_lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
|
|
|
|
|
|
Then we instantiate the base model and pass in the ``enable_lora=True`` flag:
|
|
|
|
.. code-block:: python
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.lora.request import LoRARequest
|
|
|
|
llm = LLM(model="meta-llama/Llama-2-7b-hf", enable_lora=True)
|
|
|
|
|
|
We can now submit the prompts and call ``llm.generate`` with the ``lora_request`` parameter. The first parameter
|
|
of ``LoRARequest`` is a human identifiable name, the second parameter is a globally unique ID for the adapter and
|
|
the third parameter is the path to the LoRA adapter.
|
|
|
|
.. code-block:: python
|
|
|
|
sampling_params = SamplingParams(
|
|
temperature=0,
|
|
max_tokens=256,
|
|
stop=["[/assistant]"]
|
|
)
|
|
|
|
prompts = [
|
|
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
|
|
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
|
|
]
|
|
|
|
outputs = llm.generate(
|
|
prompts,
|
|
sampling_params,
|
|
lora_request=LoRARequest("sql_adapter", 1, sql_lora_path)
|
|
)
|
|
|
|
|
|
Check out `examples/multilora_inference.py <https://github.com/vllm-project/vllm/blob/main/examples/multilora_inference.py>`_
|
|
for an example of how to use LoRA adapters with the async engine and how to use more advanced configuration options.
|
|
|
|
Serving LoRA Adapters
|
|
---------------------
|
|
LoRA adapted models can also be served with the Open-AI compatible vLLM server. To do so, we use
|
|
``--lora-modules {name}={path} {name}={path}`` to specify each LoRA module when we kickoff the server:
|
|
|
|
.. code-block:: bash
|
|
|
|
python -m vllm.entrypoints.openai.api_server \
|
|
--model meta-llama/Llama-2-7b-hf \
|
|
--enable-lora \
|
|
--lora-modules sql-lora=~/.cache/huggingface/hub/models--yard1--llama-2-7b-sql-lora-test/
|
|
|
|
The server entrypoint accepts all other LoRA configuration parameters (``max_loras``, ``max_lora_rank``, ``max_cpu_loras``,
|
|
etc.), which will apply to all forthcoming requests. Upon querying the ``/models`` endpoint, we should see our LoRA along
|
|
with its base model:
|
|
|
|
.. code-block:: bash
|
|
|
|
curl localhost:8000/v1/models | jq .
|
|
{
|
|
"object": "list",
|
|
"data": [
|
|
{
|
|
"id": "meta-llama/Llama-2-7b-hf",
|
|
"object": "model",
|
|
...
|
|
},
|
|
{
|
|
"id": "sql-lora",
|
|
"object": "model",
|
|
...
|
|
}
|
|
]
|
|
}
|
|
|
|
Requests can specify the LoRA adapter as if it were any other model via the ``model`` request parameter. The requests will be
|
|
processed according to the server-wide LoRA configuration (i.e. in parallel with base model requests, and potentially other
|
|
LoRA adapter requests if they were provided and ``max_loras`` is set high enough).
|
|
|
|
The following is an example request
|
|
|
|
.. code-block:: bash
|
|
|
|
curl http://localhost:8000/v1/completions \
|
|
-H "Content-Type: application/json" \
|
|
-d '{
|
|
"model": "sql-lora",
|
|
"prompt": "San Francisco is a",
|
|
"max_tokens": 7,
|
|
"temperature": 0
|
|
}' | jq
|