
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
247 lines
9.3 KiB
Python
247 lines
9.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import dataclasses
|
|
from typing import List, Tuple, Type
|
|
|
|
import torch
|
|
|
|
from vllm.attention import AttentionMetadata, AttentionMetadataBuilder
|
|
from vllm.attention.backends.abstract import AttentionBackend
|
|
from vllm.attention.backends.utils import CommonAttentionState
|
|
from vllm.model_executor import SamplingMetadata
|
|
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
|
from vllm.worker.model_runner import ModelInputForGPUWithSamplingMetadata
|
|
from vllm.worker.multi_step_model_runner import StatefulModelInput
|
|
from vllm.worker.pooling_model_runner import (
|
|
ModelInputForGPUWithPoolingMetadata)
|
|
|
|
|
|
class MockAttentionBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def get_impl_cls():
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
|
return AttentionMetadata
|
|
|
|
@staticmethod
|
|
def get_builder_cls() -> Type["AttentionMetadataBuilder"]:
|
|
return AttentionMetadataBuilder
|
|
|
|
@staticmethod
|
|
def get_state_cls() -> Type["CommonAttentionState"]:
|
|
return CommonAttentionState
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> Tuple[int, ...]:
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def swap_blocks(
|
|
src_kv_cache: torch.Tensor,
|
|
dst_kv_cache: torch.Tensor,
|
|
src_to_dst: torch.Tensor,
|
|
) -> None:
|
|
pass
|
|
|
|
@staticmethod
|
|
def copy_blocks(
|
|
kv_caches: List[torch.Tensor],
|
|
src_to_dists: torch.Tensor,
|
|
) -> None:
|
|
pass
|
|
|
|
|
|
def test_model_runner_input():
|
|
sampling_metadata = SamplingMetadata(
|
|
["seq_group"],
|
|
"selected_token_indices",
|
|
"categorized_sample_indices",
|
|
"num_prompts",
|
|
)
|
|
attn_metadata = AttentionMetadata(
|
|
num_prefills=1,
|
|
num_prefill_tokens=2,
|
|
num_decode_tokens=3,
|
|
slot_mapping=torch.zeros(1),
|
|
multi_modal_placeholder_index_maps=None,
|
|
enable_kv_scales_calculation=True,
|
|
)
|
|
model_input = ModelInputForGPUWithSamplingMetadata(
|
|
input_tokens=torch.ones(10),
|
|
input_positions=torch.ones(10),
|
|
sampling_metadata=sampling_metadata,
|
|
attn_metadata=attn_metadata)
|
|
|
|
assert isinstance(model_input, ModelInputForGPUWithSamplingMetadata)
|
|
|
|
# Test round trip serialization.
|
|
tensor_dict = model_input.as_broadcastable_tensor_dict()
|
|
attn_backend = MockAttentionBackend()
|
|
received_model_input = (
|
|
ModelInputForGPUWithSamplingMetadata.from_broadcasted_tensor_dict(
|
|
tensor_dict, attn_backend=attn_backend))
|
|
# Check that received copy has correct values.
|
|
assert isinstance(received_model_input,
|
|
ModelInputForGPUWithSamplingMetadata)
|
|
assert received_model_input.input_tokens is not None
|
|
assert (
|
|
received_model_input.input_tokens == model_input.input_tokens).all()
|
|
assert received_model_input.input_positions is not None
|
|
assert (received_model_input.input_positions == model_input.input_positions
|
|
).all()
|
|
assert received_model_input.multi_modal_kwargs is None
|
|
assert (received_model_input.multi_modal_kwargs ==
|
|
model_input.multi_modal_kwargs)
|
|
assert received_model_input.lora_requests is None
|
|
assert received_model_input.lora_requests == model_input.lora_requests
|
|
assert received_model_input.lora_mapping is None
|
|
assert received_model_input.lora_mapping == model_input.lora_mapping
|
|
for field in dataclasses.fields(AttentionMetadata):
|
|
assert getattr(received_model_input.attn_metadata, field.name,
|
|
None) == getattr(attn_metadata, field.name, None)
|
|
# For sampling metadata, only selected_token_indices is copied.
|
|
assert (received_model_input.sampling_metadata.selected_token_indices ==
|
|
sampling_metadata.selected_token_indices)
|
|
assert received_model_input.sampling_metadata.seq_groups is None
|
|
|
|
|
|
def test_embedding_model_runner_input():
|
|
pooling_metadata = PoolingMetadata(
|
|
seq_groups=[[0]],
|
|
seq_data={},
|
|
prompt_lens=[1],
|
|
)
|
|
attn_metadata = AttentionMetadata(
|
|
num_prefills=1,
|
|
num_prefill_tokens=2,
|
|
num_decode_tokens=3,
|
|
slot_mapping=torch.zeros(1),
|
|
multi_modal_placeholder_index_maps=None,
|
|
enable_kv_scales_calculation=True,
|
|
)
|
|
model_input = ModelInputForGPUWithPoolingMetadata(
|
|
input_tokens=torch.ones(10),
|
|
input_positions=torch.ones(10),
|
|
pooling_metadata=pooling_metadata,
|
|
attn_metadata=attn_metadata)
|
|
|
|
assert isinstance(model_input, ModelInputForGPUWithPoolingMetadata)
|
|
|
|
# Test round trip serialization.
|
|
tensor_dict = model_input.as_broadcastable_tensor_dict()
|
|
attn_backend = MockAttentionBackend()
|
|
received_model_input = (
|
|
ModelInputForGPUWithPoolingMetadata.from_broadcasted_tensor_dict(
|
|
tensor_dict, attn_backend=attn_backend))
|
|
# Check that received copy has correct values.
|
|
assert isinstance(received_model_input,
|
|
ModelInputForGPUWithPoolingMetadata)
|
|
assert received_model_input.input_tokens is not None
|
|
assert (
|
|
received_model_input.input_tokens == model_input.input_tokens).all()
|
|
assert received_model_input.input_positions is not None
|
|
assert (received_model_input.input_positions == model_input.input_positions
|
|
).all()
|
|
assert received_model_input.multi_modal_kwargs is None
|
|
assert (received_model_input.multi_modal_kwargs ==
|
|
model_input.multi_modal_kwargs)
|
|
assert received_model_input.lora_requests is None
|
|
assert received_model_input.lora_requests == model_input.lora_requests
|
|
assert received_model_input.lora_mapping is None
|
|
assert received_model_input.lora_mapping == model_input.lora_mapping
|
|
for field in dataclasses.fields(AttentionMetadata):
|
|
assert getattr(received_model_input.attn_metadata, field.name,
|
|
None) == getattr(attn_metadata, field.name, None)
|
|
# Pooling metadata is not broadcast.
|
|
assert received_model_input.pooling_metadata is None
|
|
|
|
|
|
def test_multi_step_model_runner_input():
|
|
sampling_metadata = SamplingMetadata(
|
|
["seq_group"],
|
|
"selected_token_indices",
|
|
"categorized_sample_indices",
|
|
"num_prompts",
|
|
)
|
|
attn_metadata = AttentionMetadata(
|
|
num_prefills=1,
|
|
num_prefill_tokens=2,
|
|
num_decode_tokens=3,
|
|
slot_mapping=torch.zeros(1),
|
|
multi_modal_placeholder_index_maps=None,
|
|
enable_kv_scales_calculation=True,
|
|
)
|
|
frozen_model_input = ModelInputForGPUWithSamplingMetadata(
|
|
input_tokens=torch.ones(10),
|
|
input_positions=torch.ones(10),
|
|
sampling_metadata=sampling_metadata,
|
|
attn_metadata=attn_metadata)
|
|
|
|
model_input = StatefulModelInput(
|
|
frozen_model_input=frozen_model_input,
|
|
is_last_step=True,
|
|
is_first_multi_step=False,
|
|
current_step=4,
|
|
last_sampled_token_ids=torch.ones((10, 1)),
|
|
is_multi_step=True,
|
|
num_queries=8,
|
|
num_seqs=5,
|
|
cached_outputs=[],
|
|
)
|
|
|
|
assert isinstance(model_input, StatefulModelInput)
|
|
|
|
# Test round trip serialization.
|
|
tensor_dict = model_input.as_broadcastable_tensor_dict()
|
|
attn_backend = MockAttentionBackend()
|
|
received_model_input = (StatefulModelInput.from_broadcasted_tensor_dict(
|
|
tensor_dict, attn_backend=attn_backend))
|
|
|
|
receieved_frozen_input = received_model_input.frozen_model_input
|
|
|
|
# Check that received copy has correct values.
|
|
assert isinstance(received_model_input, StatefulModelInput)
|
|
assert receieved_frozen_input.input_tokens is not None
|
|
assert (receieved_frozen_input.input_tokens ==
|
|
frozen_model_input.input_tokens).all()
|
|
assert receieved_frozen_input.input_positions is not None
|
|
assert (receieved_frozen_input.input_positions ==
|
|
frozen_model_input.input_positions).all()
|
|
assert receieved_frozen_input.multi_modal_kwargs is None
|
|
assert (frozen_model_input.multi_modal_kwargs ==
|
|
frozen_model_input.multi_modal_kwargs)
|
|
assert receieved_frozen_input.lora_requests is None
|
|
assert (receieved_frozen_input.lora_requests ==
|
|
frozen_model_input.lora_requests)
|
|
assert receieved_frozen_input.lora_mapping is None
|
|
assert (
|
|
receieved_frozen_input.lora_mapping == frozen_model_input.lora_mapping)
|
|
for field in dataclasses.fields(AttentionMetadata):
|
|
assert getattr(receieved_frozen_input.attn_metadata, field.name,
|
|
None) == getattr(attn_metadata, field.name, None)
|
|
# For sampling metadata, only selected_token_indices is copied.
|
|
assert (receieved_frozen_input.sampling_metadata.selected_token_indices ==
|
|
sampling_metadata.selected_token_indices)
|
|
assert receieved_frozen_input.sampling_metadata.seq_groups is None
|
|
|
|
# check non frozen fields
|
|
assert received_model_input.is_last_step == model_input.is_last_step
|
|
assert (received_model_input.is_first_multi_step ==
|
|
model_input.is_first_multi_step)
|
|
assert received_model_input.current_step == model_input.current_step
|
|
assert (received_model_input.last_sampled_token_ids ==
|
|
model_input.last_sampled_token_ids).all()
|
|
assert received_model_input.is_multi_step == model_input.is_multi_step
|