Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

291 lines
9.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from itertools import count
from typing import Callable, Dict, List, Optional
from typing import Sequence as GenericSequence
from typing import TypeVar, Union
from unittest.mock import MagicMock
import torch
from vllm.engine.arg_utils import EngineArgs
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.utils import set_random_seed
from vllm.sampling_params import SamplingParams
from vllm.sequence import (CompletionSequenceGroupOutput, Logprob,
SequenceData, SequenceGroupMetadata, SequenceOutput)
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
from vllm.worker.cache_engine import CacheEngine
from vllm.worker.model_runner import ModelRunner
from vllm.worker.worker import Worker
T = TypeVar("T", bound=Worker)
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
return (seq_len + block_size - 1) // block_size
def mock_worker(cls=None,
vocab_size: int = 30_000,
max_model_len: int = 2048,
rank: int = 0,
use_spec: bool = True) -> MagicMock:
if cls is None:
cls = Worker
spec = cls if use_spec else None
worker = MagicMock(spec=spec)
worker.vocab_size = vocab_size
worker.max_model_len = max_model_len
worker.rank = rank
worker.device = 'cuda:0'
return worker
def patch_execute_model_with_seeds(worker: Worker, rand_seeds: List[int]):
seed_iter = iter(rand_seeds)
original_execute_model = worker.execute_model
def new_execute_model(*args, **kwargs):
result = original_execute_model(*args, **kwargs)
set_random_seed(next(seed_iter))
return result
return new_execute_model
def zero_kv_cache(cache_engine: List[CacheEngine]):
assert cache_engine[0].gpu_cache
for key_blocks, value_blocks in cache_engine[0].gpu_cache:
key_blocks.zero_()
value_blocks.zero_()
def create_worker(cls: Callable[..., T],
model_name: str,
block_size: int,
num_gpu_blocks: int,
seed: int,
is_driver_worker: bool = True,
enforce_eager: bool = True,
model_runner_cls: Optional[ModelRunner] = None,
dtype: Optional[str] = "auto") -> T:
engine_args = EngineArgs(
model=model_name,
seed=seed,
block_size=block_size,
enforce_eager=enforce_eager,
dtype=dtype,
)
engine_config = engine_args.create_engine_config()
distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port())
worker = cls(
vllm_config=engine_config,
local_rank=0,
rank=0,
distributed_init_method=distributed_init_method,
is_driver_worker=is_driver_worker,
model_runner_cls=model_runner_cls,
)
worker.init_device()
worker.load_model()
engine_config.cache_config.num_gpu_blocks = num_gpu_blocks
engine_config.cache_config.num_cpu_blocks = 0
worker.initialize_cache(
num_gpu_blocks=engine_config.cache_config.num_gpu_blocks,
num_cpu_blocks=engine_config.cache_config.num_cpu_blocks)
return worker
def create_seq_group_metadata_from_prompts(
prompts: List[List[int]],
num_gpu_blocks: int,
block_size: int,
final_prompt_lens: List[int],
continuations: Optional[List[List[int]]] = None,
seq_ids: Optional[List[int]] = None,
) -> List[SequenceGroupMetadata]:
if continuations is None:
continuations = [[] for _ in prompts]
if seq_ids is None:
seq_ids = list(i for i, _ in enumerate(prompts))
free_gpu_blocks = list(range(num_gpu_blocks))
block_allocations = {
i: [
free_gpu_blocks.pop()
for _ in range(round_up_to_next_block(final_len, block_size))
]
for i, final_len in enumerate(final_prompt_lens)
}
seq_grou_metadata_list = []
for i, (prompt_token_ids,
cont_token_ids) in enumerate(zip(prompts, continuations)):
data = SequenceData.from_seqs(prompt_token_ids, cont_token_ids)
data.update_num_computed_tokens(
len(prompt_token_ids) + len(cont_token_ids) - 1)
seq_data = {i: data}
seq_grou_metadata_list.append(
SequenceGroupMetadata(
request_id=str(i),
is_prompt=len(cont_token_ids) == 0,
seq_data=seq_data,
sampling_params=SamplingParams(temperature=0.0),
block_tables={i: block_allocations[i][:]},
))
return seq_grou_metadata_list
def create_chunked_seq_group_metadata_from_prompt(
prompt: List[int],
num_gpu_blocks: int,
chunk_size: int,
block_size: int,
seq_id: Optional[int] = None) -> List[SequenceGroupMetadata]:
if seq_id is None:
seq_id = 0
free_gpu_blocks = list(range(num_gpu_blocks))
block_allocations = [
free_gpu_blocks.pop()
for _ in range(round_up_to_next_block(len(prompt), block_size))
]
seq_group_metadata_list = []
for i, idx in enumerate(range(0, len(prompt), chunk_size)):
chunk_ids = prompt[idx:idx + chunk_size]
data = SequenceData.from_seqs(prompt)
data.update_num_computed_tokens(idx)
seq_data = {i: data}
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=str(seq_id),
is_prompt=True,
do_sample=idx + chunk_size >= len(prompt), # terminal chunk
seq_data=seq_data,
sampling_params=SamplingParams(temperature=0.0),
block_tables={i: block_allocations},
token_chunk_size=len(chunk_ids)))
return seq_group_metadata_list
def assert_logprobs_dict_allclose(
actual_logprobs: List[Dict[int, Logprob]],
expected_logprobs: List[Dict[int, Logprob]]) -> None:
for single_step_actual_logprobs, single_step_expected_logprobs in zip(
actual_logprobs, expected_logprobs):
assert set(single_step_actual_logprobs.keys()) == set(
single_step_expected_logprobs.keys())
for token_id in single_step_actual_logprobs:
actual = torch.tensor(
single_step_actual_logprobs[token_id].logprob)
expected = torch.tensor(
single_step_expected_logprobs[token_id].logprob)
torch.testing.assert_close(actual, expected)
def create_sampler_output_list(
token_ids: torch.Tensor,
probs: GenericSequence[Optional[torch.Tensor]],
logprobs: GenericSequence[Optional[torch.Tensor]],
seq_ids: Optional[List[int]] = None) -> List[SamplerOutput]:
num_steps, batch_size = token_ids.shape
token_ids_by_step = token_ids.tolist()
if seq_ids is None:
seq_ids = list(range(batch_size))
return [
SamplerOutput(outputs=[
CompletionSequenceGroupOutput(
samples=[
SequenceOutput(
output_token=token_id,
parent_seq_id=seq_ids[seq_index],
logprobs={token_id: Logprob(0)},
)
],
prompt_logprobs=None,
) for seq_index, token_id in enumerate(token_ids_by_step[step])
],
sampled_token_probs=probs[step],
logprobs=logprobs[step],
sampled_token_ids=token_ids[step])
for step in range(num_steps)
]
def create_batch(batch_size,
k,
prompt_len: Union[int, List[int]] = 10,
prev_output_token_len: int = 10,
seq_ids: Optional[List[int]] = None,
num_gpu_blocks: Optional[int] = None,
block_size: Optional[int] = None,
prefill_chunk_size: Optional[int] = None):
if block_size is None:
block_size = 8
if num_gpu_blocks is None:
num_gpu_blocks = 2048 // block_size
iterator = count()
if isinstance(prompt_len, int):
prompt_lens = [prompt_len for _ in range(batch_size)]
else:
prompt_lens = prompt_len
prompts = [[next(iterator) for _ in range(p_len)] for p_len in prompt_lens]
if prefill_chunk_size:
# Create a batch of chunked prompts.
if not seq_ids:
seq_ids = list(range(len(prompts)))
seq_group_metadata_list = []
for p, sid in zip(prompts, seq_ids):
seq_group_metadata_list += \
create_chunked_seq_group_metadata_from_prompt(
p, num_gpu_blocks, prefill_chunk_size, block_size, sid)
seq_group_metadata_list = seq_group_metadata_list[:batch_size]
prev_output_tokens = []
else:
prev_output_tokens = [[
next(iterator) for _ in range(prev_output_token_len)
] for _ in range(batch_size)]
final_prompt_lens = [
len(prompt) + len(prev_output_token) + k + 1
for prompt, prev_output_token in zip(prompts, prev_output_tokens)
]
seq_group_metadata_list = create_seq_group_metadata_from_prompts(
prompts, num_gpu_blocks, block_size, final_prompt_lens,
prev_output_tokens, seq_ids)
return seq_group_metadata_list, prompts, prev_output_tokens
def maybe_enable_chunked_prefill(prefill_chunk_size, llm_kwargs):
if prefill_chunk_size > 0:
llm_kwargs.update(
**{
"enable_chunked_prefill": True,
"max_num_batched_tokens": prefill_chunk_size,
"max_num_seqs": prefill_chunk_size
})
else:
llm_kwargs["enable_chunked_prefill"] = False