vllm/tests/spec_decode/e2e/test_integration.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

142 lines
5.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Tests which cover integration of the speculative decoding framework with
other features, e.g. cuda graphs.
"""
import pytest
from .conftest import run_equality_correctness_test
MAIN_MODEL = "JackFram/llama-68m"
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Verify equality when cuda graphs allowed.
"enforce_eager": False,
"model_name": "JackFram/llama-68m",
}])
@pytest.mark.parametrize(
"per_test_common_llm_kwargs",
[
{
# Identical models.
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [{}])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("output_len", [32])
@pytest.mark.parametrize("seed", [1])
def test_spec_decode_cuda_graph(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs,
batch_size: int, output_len: int, seed: int):
"""Verify spec decode equality when cuda graphs are enabled.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=output_len,
seed=seed,
temperature=0.0)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"model_name": "JackFram/llama-160m",
# Skip cuda graph recording for fast test.
"enforce_eager": True,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [
{
"speculative_model": "LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit",
"num_speculative_tokens": 5,
},
])
@pytest.mark.parametrize(
"test_llm_kwargs",
[
# Explicitly specify draft model quantization
{
"speculative_model_quantization": "gptq",
},
# Explicitly specify GPTQ-based draft model to use marlin quantization
{
"speculative_model_quantization": "marlin",
},
# Not explicitly specify draft model quantization
{
"speculative_model_quantization": None,
},
])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("batch_size", [2])
@pytest.mark.parametrize("seed", [1])
def test_speculative_model_quantization_config(vllm_runner, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size: int, seed: int):
"""Verify spec decode works well with draft model quantization configs.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=32,
seed=seed,
temperature=0.0)
@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"model_name": MAIN_MODEL,
# Skip cuda graph recording for fast test.
"enforce_eager": True,
"speculative_model": "JackFram/llama-68m",
"num_speculative_tokens": 3,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_disable_mqa_scorer": True,
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",
[
# Use smaller output len for fast test.
32,
])
@pytest.mark.parametrize("seed", [1])
def test_mqa_scorer(vllm_runner, common_llm_kwargs, per_test_common_llm_kwargs,
baseline_llm_kwargs, test_llm_kwargs, batch_size: int,
output_len: int, seed: int):
"""Verify that ngram speculative decoding generates the same output
with batch expansion scorer and mqa scorer.
"""
run_equality_correctness_test(vllm_runner,
common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs,
test_llm_kwargs,
batch_size,
max_output_len=output_len,
seed=seed,
temperature=0.0)