
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
203 lines
6.5 KiB
Python
203 lines
6.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Compare the with and without prefix caching.
|
|
|
|
Run `pytest tests/prefix_caching/test_prefix_caching.py`.
|
|
"""
|
|
|
|
import pytest
|
|
|
|
from tests.conftest import VllmRunner
|
|
from tests.core.utils import SchedulerProxy, create_dummy_prompt
|
|
from tests.kernels.utils import override_backend_env_variable
|
|
from vllm import SamplingParams, TokensPrompt
|
|
from vllm.core.scheduler import Scheduler
|
|
from vllm.engine.llm_engine import LLMEngine
|
|
|
|
from ..models.utils import check_outputs_equal
|
|
|
|
MODELS = [
|
|
"facebook/opt-125m",
|
|
]
|
|
|
|
UNSTABLE_PROMPT_SEQUENCE = [
|
|
([0] * 588) + ([1] * 1332) + ([2] * 30) + ([3] * 1),
|
|
([0] * 588) + ([1] * 1332) + ([4] * 3) + ([5] * 50),
|
|
([0] * 588) + ([1] * 1332) + ([2] * 30) + ([6] * 95),
|
|
([0] * 588) + ([1] * 1332) + ([4] * 3) + ([7] * 174),
|
|
([0] * 588) + ([8] * 1539),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "FLASHINFER", "XFORMERS"])
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [5])
|
|
@pytest.mark.parametrize("cached_position", [0, 1])
|
|
@pytest.mark.parametrize("enable_chunked_prefill", [True, False])
|
|
@pytest.mark.parametrize("block_size", [16])
|
|
def test_mixed_requests(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
backend: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
cached_position: int,
|
|
enable_chunked_prefill: bool,
|
|
block_size: int,
|
|
monkeypatch,
|
|
) -> None:
|
|
"""
|
|
Test the case when some sequences have the prefix cache hit
|
|
and the others don't. The cached position determines where
|
|
the sequence is at among the batch of prefills.
|
|
"""
|
|
override_backend_env_variable(monkeypatch, backend)
|
|
|
|
with hf_runner(model, dtype=dtype) as hf_model:
|
|
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
cached_prompt = example_prompts[cached_position]
|
|
with vllm_runner(
|
|
model,
|
|
dtype=dtype,
|
|
enable_prefix_caching=True,
|
|
enable_chunked_prefill=enable_chunked_prefill,
|
|
block_size=block_size,
|
|
) as vllm_model:
|
|
# Run the first prompt so the cache is populated
|
|
vllm_outputs = vllm_model.generate_greedy([cached_prompt], max_tokens)
|
|
|
|
# Run all the promopts
|
|
greedy_params = SamplingParams(temperature=0.0, max_tokens=max_tokens)
|
|
req_outputs = vllm_model.model.generate(example_prompts, greedy_params)
|
|
|
|
# Verify number of cached tokens
|
|
for i in range(len(req_outputs)):
|
|
if i == cached_position:
|
|
expected_num_cached_tokens = (
|
|
len(req_outputs[i].prompt_token_ids) //
|
|
block_size) * block_size
|
|
else:
|
|
expected_num_cached_tokens = 0
|
|
assert (
|
|
req_outputs[i].num_cached_tokens == expected_num_cached_tokens)
|
|
|
|
vllm_outputs = [(
|
|
output.prompt_token_ids + list(output.outputs[0].token_ids),
|
|
output.prompt + output.outputs[0].text,
|
|
) for output in req_outputs]
|
|
|
|
check_outputs_equal(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "FLASHINFER", "XFORMERS"])
|
|
def test_unstable_prompt_sequence(
|
|
vllm_runner,
|
|
backend: str,
|
|
monkeypatch,
|
|
) -> None:
|
|
override_backend_env_variable(monkeypatch, backend)
|
|
|
|
with vllm_runner(
|
|
"Qwen/Qwen2.5-0.5B-Instruct",
|
|
enable_chunked_prefill=True,
|
|
enable_prefix_caching=True,
|
|
max_model_len=4096,
|
|
) as vllm_model:
|
|
for prompt in UNSTABLE_PROMPT_SEQUENCE:
|
|
vllm_model.generate(TokensPrompt(prompt_token_ids=prompt),
|
|
SamplingParams(max_tokens=1))
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
def test_fully_cached_prefill_needs_uncached_token(model):
|
|
block_size = 16
|
|
max_num_batched_tokens = 16
|
|
num_output_tokens = 5
|
|
# Make a vllm engine
|
|
runner = VllmRunner(
|
|
model_name=model,
|
|
gpu_memory_utilization=0.7,
|
|
enable_chunked_prefill=True,
|
|
enforce_eager=True,
|
|
enable_prefix_caching=True,
|
|
block_size=block_size,
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
max_num_seqs=max_num_batched_tokens,
|
|
)
|
|
engine: LLMEngine = runner.model.llm_engine
|
|
|
|
scheduler: Scheduler = SchedulerProxy(engine.scheduler[0]) # type: ignore
|
|
engine.scheduler[0] = scheduler
|
|
|
|
# SeqA
|
|
seqA_tokens = list(range(2 * block_size))
|
|
seqA, seq_groupA = create_dummy_prompt(
|
|
request_id="0",
|
|
prompt_tokens=seqA_tokens,
|
|
max_tokens=num_output_tokens,
|
|
block_size=block_size,
|
|
)
|
|
|
|
scheduler.add_seq_group(seq_groupA)
|
|
|
|
assert seqA.data.get_num_computed_tokens() == 0
|
|
|
|
# Prefill seqA
|
|
while not seqA.is_finished():
|
|
engine.step()
|
|
|
|
# seqB
|
|
seqB_tokens = [t + 1 for t in seqA_tokens] # shift by 1
|
|
seqB, seq_groupB = create_dummy_prompt(
|
|
request_id="1",
|
|
prompt_tokens=seqB_tokens,
|
|
max_tokens=num_output_tokens,
|
|
block_size=block_size,
|
|
)
|
|
|
|
# seqC is the same as seqA
|
|
seqC, seq_groupC = create_dummy_prompt(
|
|
request_id="2",
|
|
prompt_tokens=seqA_tokens,
|
|
max_tokens=num_output_tokens,
|
|
block_size=block_size,
|
|
)
|
|
|
|
scheduler.add_seq_group(seq_groupB)
|
|
scheduler.add_seq_group(seq_groupC)
|
|
|
|
# Even seqC is fully cached, it should not be prefilled since we
|
|
# require at least 1 uncached token.
|
|
engine.step()
|
|
|
|
sched_metas, sched_out, _ = scheduler.last_schedule_ret()
|
|
assert len(sched_out.scheduled_seq_groups) == 1
|
|
assert (sched_out.scheduled_seq_groups[0].seq_group.request_id ==
|
|
seq_groupB.request_id)
|
|
assert (sched_out.scheduled_seq_groups[0].token_chunk_size ==
|
|
max_num_batched_tokens)
|
|
|
|
# When seqB is finished, seqC could be prefilled.
|
|
while not seqB.is_finished():
|
|
engine.step()
|
|
sched_metas, sched_out, _ = scheduler.last_schedule_ret()
|
|
assert len(sched_out.scheduled_seq_groups) == 1
|
|
assert (sched_out.scheduled_seq_groups[0].seq_group.request_id ==
|
|
seq_groupB.request_id)
|
|
|
|
engine.step()
|
|
sched_metas, sched_out, _ = scheduler.last_schedule_ret()
|
|
assert len(sched_out.scheduled_seq_groups) == 1
|
|
assert (sched_out.scheduled_seq_groups[0].seq_group.request_id ==
|
|
seq_groupC.request_id)
|
|
assert sched_out.scheduled_seq_groups[0].token_chunk_size == len(
|
|
seqA_tokens)
|