
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
578 lines
20 KiB
Python
578 lines
20 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import List, Optional, Tuple, Type, overload
|
|
|
|
import pytest
|
|
import torch
|
|
from transformers import (AutoConfig, AutoModelForVision2Seq, AutoTokenizer,
|
|
BatchEncoding)
|
|
|
|
from vllm.attention.backends.flash_attn import FlashAttentionMetadata
|
|
from vllm.attention.selector import (_Backend, _cached_get_attn_backend,
|
|
global_force_attn_backend_context_manager)
|
|
from vllm.model_executor.models.mllama import (MLLAMA_IMAGE_TOKEN_ID,
|
|
MllamaForConditionalGeneration)
|
|
from vllm.multimodal.image import rescale_image_size
|
|
from vllm.sequence import SampleLogprobs
|
|
|
|
from ....conftest import (IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner,
|
|
_ImageAssets)
|
|
from ....utils import large_gpu_test
|
|
from ...utils import check_logprobs_close
|
|
|
|
_LIMIT_IMAGE_PER_PROMPT = 3
|
|
|
|
LIST_ENC_DEC_SUPPORTED_BACKENDS = [_Backend.XFORMERS, _Backend.FLASH_ATTN]
|
|
|
|
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
|
|
"stop_sign":
|
|
"<|image|><|begin_of_text|>The meaning of the image is",
|
|
"cherry_blossom":
|
|
"<|image|><|begin_of_text|>The city is",
|
|
})
|
|
|
|
text_only_prompts = [
|
|
"The color of the sky is blue but sometimes it can also be",
|
|
]
|
|
|
|
models = [
|
|
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
|
]
|
|
|
|
# Indices for inputs
|
|
TEXT_ONLY = '0'
|
|
IMAGE_AT_BEG = '1'
|
|
IMAGE_AT_MIDDLE = '2'
|
|
TWO_IMAGES = '3'
|
|
|
|
# Input tokenized
|
|
prompt_data = {
|
|
# Tell me a story
|
|
TEXT_ONLY: [41551, 757, 264, 3446],
|
|
# <|image|> What's the content of this image
|
|
IMAGE_AT_BEG:
|
|
[MLLAMA_IMAGE_TOKEN_ID, 3639, 596, 279, 2262, 315, 420, 2217, 220],
|
|
# Hello <|image|>What' the content of this image
|
|
IMAGE_AT_MIDDLE:
|
|
[9906, 220, MLLAMA_IMAGE_TOKEN_ID, 3923, 6, 279, 2262, 315, 420, 2217],
|
|
#<|image|>Is there a duck in this image?<|image|>What's the animal in this image? # noqa: E501
|
|
TWO_IMAGES: [
|
|
MLLAMA_IMAGE_TOKEN_ID, 3957, 1070, 264, 37085, 304, 420, 2217, 30,
|
|
MLLAMA_IMAGE_TOKEN_ID, 3923, 596, 279, 10065, 304, 420, 2217, 30
|
|
]
|
|
}
|
|
|
|
|
|
def vllm_to_hf_output(vllm_output: Tuple[List[int], str,
|
|
Optional[SampleLogprobs]],
|
|
model: str):
|
|
"""Sanitize vllm output to be comparable with hf output."""
|
|
output_ids, output_str, out_logprobs = vllm_output
|
|
|
|
config = AutoConfig.from_pretrained(model)
|
|
image_token_id = config.image_token_index
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model)
|
|
eos_token_id = tokenizer.eos_token_id
|
|
|
|
hf_output_ids = [
|
|
token_id for idx, token_id in enumerate(output_ids)
|
|
if token_id != image_token_id or output_ids[idx - 1] != image_token_id
|
|
]
|
|
|
|
hf_output_str = output_str
|
|
if hf_output_ids[-1] == eos_token_id:
|
|
hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
|
|
|
|
return hf_output_ids, hf_output_str, out_logprobs
|
|
|
|
|
|
def _get_inputs(
|
|
image_assets: _ImageAssets,
|
|
*,
|
|
size_factors: Optional[List[float]] = None,
|
|
sizes: Optional[List[Tuple[int, int]]] = None,
|
|
) -> List[Tuple[List[str], PromptImageInput]]:
|
|
images = [asset.pil_image for asset in image_assets]
|
|
|
|
if size_factors is not None:
|
|
inputs_per_image = [(
|
|
[prompt for _ in size_factors],
|
|
[rescale_image_size(image, factor) for factor in size_factors],
|
|
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
|
|
elif sizes is not None:
|
|
inputs_per_image = [(
|
|
[
|
|
prompt if size is not None else text_only_prompts[0]
|
|
for size in sizes
|
|
],
|
|
[
|
|
image.resize(size) if size is not None else None
|
|
for size in sizes
|
|
],
|
|
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
|
|
if len(sizes) == 0:
|
|
inputs_per_image.append(
|
|
(text_only_prompts, [None] * len(text_only_prompts)))
|
|
else:
|
|
raise ValueError("You must provide either `size_factors` or `sizes`")
|
|
|
|
return inputs_per_image
|
|
|
|
|
|
@overload
|
|
def run_test(
|
|
hf_runner: Type[HfRunner],
|
|
vllm_runner: Type[VllmRunner],
|
|
image_assets: _ImageAssets,
|
|
model: str,
|
|
*,
|
|
size_factors: List[float],
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
tensor_parallel_size: int,
|
|
distributed_executor_backend: Optional[str] = None,
|
|
):
|
|
...
|
|
|
|
|
|
@overload
|
|
def run_test(
|
|
hf_runner: Type[HfRunner],
|
|
vllm_runner: Type[VllmRunner],
|
|
image_assets: _ImageAssets,
|
|
model: str,
|
|
*,
|
|
sizes: List[Tuple[int, int]],
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
tensor_parallel_size: int,
|
|
distributed_executor_backend: Optional[str] = None,
|
|
):
|
|
...
|
|
|
|
|
|
def run_test(
|
|
hf_runner: Type[HfRunner],
|
|
vllm_runner: Type[VllmRunner],
|
|
image_assets: _ImageAssets,
|
|
model: str,
|
|
*,
|
|
size_factors: Optional[List[float]] = None,
|
|
sizes: Optional[List[Tuple[int, int]]] = None,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
tensor_parallel_size: int,
|
|
distributed_executor_backend: Optional[str] = None,
|
|
):
|
|
_run_test(
|
|
hf_runner,
|
|
vllm_runner,
|
|
_get_inputs(image_assets, size_factors=size_factors, sizes=sizes),
|
|
model,
|
|
dtype=dtype,
|
|
max_tokens=max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
distributed_executor_backend=distributed_executor_backend,
|
|
)
|
|
|
|
|
|
def _run_test(
|
|
hf_runner: Type[HfRunner],
|
|
vllm_runner: Type[VllmRunner],
|
|
inputs: List[Tuple[List[str], PromptImageInput]],
|
|
model: str,
|
|
*,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
tensor_parallel_size: int,
|
|
distributed_executor_backend: Optional[str] = None,
|
|
):
|
|
"""Inference result should be the same between hf and vllm.
|
|
|
|
All the image fixtures for the test are from IMAGE_ASSETS.
|
|
For huggingface runner, we provide the PIL images as input.
|
|
For vllm runner, we provide MultiModalDataDict objects
|
|
and corresponding MultiModalConfig as input.
|
|
Note, the text input is also adjusted to abide by vllm contract.
|
|
The text output is sanitized to be able to compare with hf.
|
|
"""
|
|
# NOTE: take care of the order. run vLLM first, and then run HF.
|
|
# vLLM needs a fresh new process without cuda initialization.
|
|
# if we run HF first, the cuda initialization will be done and it
|
|
# will hurt multiprocessing backend with fork method (the default method).
|
|
|
|
# max_model_len should be greater than image_feature_size
|
|
with vllm_runner(model,
|
|
dtype=dtype,
|
|
max_model_len=4096,
|
|
max_num_seqs=2,
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
distributed_executor_backend=distributed_executor_backend,
|
|
enforce_eager=True,
|
|
limit_mm_per_prompt={"image": _LIMIT_IMAGE_PER_PROMPT
|
|
}) as vllm_model:
|
|
vllm_outputs_per_image = [
|
|
vllm_model.generate_greedy_logprobs(prompts,
|
|
max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
images=images)
|
|
for prompts, images in inputs
|
|
]
|
|
|
|
def process(hf_inputs: BatchEncoding, **kwargs):
|
|
return hf_inputs
|
|
|
|
with hf_runner(model,
|
|
dtype=dtype,
|
|
model_kwargs={"device_map": "auto"},
|
|
postprocess_inputs=process,
|
|
auto_cls=AutoModelForVision2Seq) as hf_model:
|
|
hf_outputs_per_image = [
|
|
hf_model.generate_greedy_logprobs_limit(prompts,
|
|
max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
images=images)
|
|
for prompts, images in inputs
|
|
]
|
|
|
|
for hf_outputs, vllm_outputs in zip(hf_outputs_per_image,
|
|
vllm_outputs_per_image):
|
|
check_logprobs_close(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=[
|
|
vllm_to_hf_output(vllm_output, model)
|
|
for vllm_output in vllm_outputs
|
|
],
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def clear_cache():
|
|
"""Fixture to clear backend cache before each test."""
|
|
_cached_get_attn_backend.cache_clear() # Clear the cache
|
|
yield # This allows the test to run
|
|
|
|
|
|
@large_gpu_test(min_gb=48)
|
|
@pytest.mark.core_model
|
|
@pytest.mark.parametrize("model", models)
|
|
@pytest.mark.parametrize(
|
|
"sizes",
|
|
[
|
|
# Text only
|
|
[],
|
|
# Single-size
|
|
[(512, 512)],
|
|
# Single-size, batched
|
|
[(512, 512), (512, 512), (512, 512)],
|
|
# Multi-size, batched
|
|
[(512, 512), (1024, 512), (1536, 512), (2048, 512), (512, 1024),
|
|
(1024, 1024), (512, 1536), (512, 2028)],
|
|
# Multi-size, batched, including text only
|
|
[(512, 512), (1024, 512), (1536, 512), (2048, 512), (512, 1024),
|
|
(1024, 1024), (512, 1536), (512, 2028), None],
|
|
# mllama has 8 possible aspect ratios, carefully set the sizes
|
|
# to cover all of them
|
|
])
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
@pytest.mark.parametrize("attn_backend", LIST_ENC_DEC_SUPPORTED_BACKENDS)
|
|
def test_models_single_leading_image(hf_runner, vllm_runner, image_assets,
|
|
model, sizes, dtype, max_tokens,
|
|
num_logprobs,
|
|
attn_backend: _Backend) -> None:
|
|
with global_force_attn_backend_context_manager(attn_backend):
|
|
if attn_backend == _Backend.FLASH_ATTN:
|
|
# Flash Attention works only with bfloat16 data-type
|
|
dtype = 'bfloat16'
|
|
run_test(
|
|
hf_runner,
|
|
vllm_runner,
|
|
image_assets,
|
|
model,
|
|
sizes=sizes,
|
|
dtype=dtype,
|
|
max_tokens=max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
tensor_parallel_size=1,
|
|
)
|
|
|
|
|
|
@large_gpu_test(min_gb=48)
|
|
@pytest.mark.core_model
|
|
@pytest.mark.parametrize("model", models)
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
@pytest.mark.parametrize("attn_backend", LIST_ENC_DEC_SUPPORTED_BACKENDS)
|
|
def test_models_multi_leading_images(hf_runner, vllm_runner, image_assets,
|
|
model, dtype, max_tokens, num_logprobs,
|
|
attn_backend: _Backend) -> None:
|
|
|
|
stop_sign = image_assets[0].pil_image
|
|
cherry_blossom = image_assets[1].pil_image
|
|
|
|
inputs = [(
|
|
[
|
|
"<|image|><|image|><|begin_of_text|>Describe 2 images.", # noqa: E501
|
|
"<|image|><|image|><|begin_of_text|>Describe 2 images.", # noqa: E501
|
|
"<|image|><|image|><|image|><|begin_of_text|>Describe 3 images.", # noqa: E501
|
|
],
|
|
[
|
|
[stop_sign, cherry_blossom],
|
|
# Images with different sizes.
|
|
[
|
|
stop_sign.resize((512, 512)),
|
|
stop_sign,
|
|
],
|
|
[
|
|
stop_sign,
|
|
stop_sign.resize((512, 1536)),
|
|
cherry_blossom.resize((512, 1024)),
|
|
],
|
|
])]
|
|
with global_force_attn_backend_context_manager(attn_backend):
|
|
if attn_backend == _Backend.FLASH_ATTN:
|
|
# Flash Attention works only with bfloat16 data-type
|
|
dtype = 'bfloat16'
|
|
_run_test(
|
|
hf_runner,
|
|
vllm_runner,
|
|
inputs,
|
|
model,
|
|
dtype=dtype,
|
|
max_tokens=max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
tensor_parallel_size=1,
|
|
)
|
|
|
|
|
|
@large_gpu_test(min_gb=48)
|
|
@pytest.mark.core_model
|
|
@pytest.mark.parametrize("model", models)
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
@pytest.mark.parametrize("attn_backend", LIST_ENC_DEC_SUPPORTED_BACKENDS)
|
|
def test_models_interleaved_images(hf_runner, vllm_runner, image_assets, model,
|
|
dtype, max_tokens, num_logprobs,
|
|
attn_backend: _Backend) -> None:
|
|
|
|
stop_sign = image_assets[0].pil_image
|
|
cherry_blossom = image_assets[1].pil_image
|
|
|
|
inputs = [(
|
|
[
|
|
"<|begin_of_text|>The content of the image <|image|> is", # noqa: E501
|
|
"<|begin_of_text|>Between the first image <|image|> and the second image<|image|>, " # noqa: E501
|
|
"which is a stop sign and which is a cherry blossom?", # noqa: E501
|
|
],
|
|
[
|
|
[stop_sign],
|
|
[stop_sign, cherry_blossom],
|
|
])]
|
|
with global_force_attn_backend_context_manager(attn_backend):
|
|
if attn_backend == _Backend.FLASH_ATTN:
|
|
# Flash Attention works only with bfloat16 data-type
|
|
dtype = 'bfloat16'
|
|
_run_test(
|
|
hf_runner,
|
|
vllm_runner,
|
|
inputs,
|
|
model,
|
|
dtype=dtype,
|
|
max_tokens=max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
tensor_parallel_size=1,
|
|
)
|
|
|
|
|
|
@large_gpu_test(min_gb=48)
|
|
@pytest.mark.core_model
|
|
@pytest.mark.parametrize("model", models)
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
@pytest.mark.parametrize("attn_backend", LIST_ENC_DEC_SUPPORTED_BACKENDS)
|
|
def test_regression(vllm_runner, image_assets, model, dtype, max_tokens,
|
|
num_logprobs, attn_backend: _Backend) -> None:
|
|
|
|
stop_sign = image_assets[0].pil_image
|
|
|
|
with global_force_attn_backend_context_manager(attn_backend), vllm_runner(
|
|
model,
|
|
dtype=dtype,
|
|
max_model_len=4096,
|
|
max_num_seqs=2,
|
|
tensor_parallel_size=1,
|
|
enforce_eager=True,
|
|
limit_mm_per_prompt={"image":
|
|
_LIMIT_IMAGE_PER_PROMPT}) as vllm_model:
|
|
|
|
# Regression tests for https://github.com/vllm-project/vllm/issues/10648
|
|
|
|
# Number of image tags is greater than the number of images provided
|
|
prompt = "<|begin_of_text|><|image|><|image|> Compare the two images" # noqa: E501
|
|
image = stop_sign
|
|
with pytest.raises(ValueError):
|
|
vllm_model.generate_greedy_logprobs([prompt],
|
|
max_tokens,
|
|
num_logprobs,
|
|
images=[image])
|
|
|
|
# Batch of a text-only and image request that requires cross-attention
|
|
prompts = [
|
|
"What is the capital of spain?",
|
|
"Text before the image...<|image|>What is in the image?", # noqa: E501
|
|
]
|
|
images = [
|
|
None,
|
|
[stop_sign],
|
|
]
|
|
vllm_model.generate_greedy_logprobs(prompts,
|
|
max_tokens,
|
|
num_logprobs,
|
|
images=images)
|
|
|
|
# Test the reverse order too for good measure
|
|
prompts = [
|
|
"<|begin_of_text|>Text before the image...<|image|>What is in the image?", # noqa: E501
|
|
"<|begin_of_text|>Hello!",
|
|
]
|
|
images = [
|
|
[stop_sign],
|
|
None,
|
|
]
|
|
vllm_model.generate_greedy_logprobs(prompts,
|
|
max_tokens,
|
|
num_logprobs,
|
|
images=images)
|
|
|
|
|
|
@pytest.mark.core_model
|
|
@pytest.mark.parametrize(
|
|
"input_indices_and_output",
|
|
# inputs, (cross_attention_mask, kv_range_for_decode)
|
|
[([TEXT_ONLY], (None, None)), ([IMAGE_AT_BEG], (None, None)),
|
|
([TEXT_ONLY, IMAGE_AT_BEG], (None, None)),
|
|
([IMAGE_AT_MIDDLE], ((10, 12), [[0, 6]])),
|
|
([TEXT_ONLY, IMAGE_AT_MIDDLE], ((14, 12), [[0, 6]])),
|
|
([TEXT_ONLY, IMAGE_AT_BEG, IMAGE_AT_MIDDLE],
|
|
((23, 24), [[0, 6], [6, 12]])),
|
|
([IMAGE_AT_MIDDLE, TEXT_ONLY], ((14, 12), [[0, 6]])),
|
|
([TWO_IMAGES], ((18, 12), [[6, 12]])),
|
|
([TEXT_ONLY, TWO_IMAGES], ((22, 12), [[6, 12]]))])
|
|
def test_get_cross_attention_mask(input_indices_and_output) -> None:
|
|
|
|
input_indices, expected_output = input_indices_and_output
|
|
|
|
sequences = [torch.tensor(prompt_data[i]) for i in input_indices]
|
|
num_tiles = [[2, 2] if i != TEXT_ONLY else [] for i in input_indices
|
|
if i != TEXT_ONLY]
|
|
input = torch.cat(sequences)
|
|
|
|
seq_lens = [len(s) for s in sequences]
|
|
|
|
attn_data = FlashAttentionMetadata(
|
|
seq_lens=seq_lens,
|
|
# Dummy values
|
|
enable_kv_scales_calculation=False,
|
|
num_prefills=0,
|
|
num_prefill_tokens=0,
|
|
num_decode_tokens=0,
|
|
slot_mapping=0,
|
|
multi_modal_placeholder_index_maps=None,
|
|
seq_lens_tensor=0,
|
|
max_prefill_seq_len=0,
|
|
max_decode_seq_len=0,
|
|
context_lens_tensor=None,
|
|
block_tables=None,
|
|
use_cuda_graph=False,
|
|
)
|
|
|
|
dummy: dict[str, str] = {}
|
|
|
|
cross_attention_mask, kv_range_for_decode = MllamaForConditionalGeneration\
|
|
.get_cross_attention_mask(dummy,
|
|
input,
|
|
attn_data,
|
|
num_tiles=num_tiles,
|
|
num_tokens_per_tile=3,
|
|
dtype=torch.bfloat16)
|
|
|
|
expected_cross_attention_mask, expected_kv_range_for_decode = \
|
|
expected_output
|
|
|
|
assert kv_range_for_decode == expected_kv_range_for_decode
|
|
if expected_cross_attention_mask is not None:
|
|
assert cross_attention_mask is not None
|
|
assert cross_attention_mask.shape == expected_cross_attention_mask
|
|
else:
|
|
assert cross_attention_mask is None
|
|
|
|
|
|
@pytest.mark.core_model
|
|
@pytest.mark.parametrize(
|
|
"input_indices",
|
|
[[TEXT_ONLY], [IMAGE_AT_BEG], [TEXT_ONLY, IMAGE_AT_BEG], [IMAGE_AT_MIDDLE],
|
|
[TEXT_ONLY, IMAGE_AT_MIDDLE], [TEXT_ONLY, IMAGE_AT_BEG, IMAGE_AT_MIDDLE],
|
|
[IMAGE_AT_MIDDLE, TEXT_ONLY], [TWO_IMAGES], [TEXT_ONLY, TWO_IMAGES]])
|
|
def test_get_full_text_row_masked_out_mask(input_indices) -> None:
|
|
|
|
sequences = [torch.tensor(prompt_data[i]) for i in input_indices]
|
|
|
|
seq_lens = [len(s) for s in sequences]
|
|
|
|
num_prefill_tokens = sum(seq_lens)
|
|
|
|
# TEXT_ONLY is zero, so it will be masked out,
|
|
# other instances should not be.
|
|
encoder_seq_lens = [int(i) for i in input_indices]
|
|
|
|
attn_data = FlashAttentionMetadata(
|
|
seq_lens=seq_lens,
|
|
encoder_seq_lens=encoder_seq_lens,
|
|
num_prefill_tokens=num_prefill_tokens,
|
|
# Dummy values
|
|
enable_kv_scales_calculation=False,
|
|
num_prefills=0,
|
|
num_decode_tokens=0,
|
|
slot_mapping=0,
|
|
multi_modal_placeholder_index_maps=None,
|
|
seq_lens_tensor=0,
|
|
max_prefill_seq_len=0,
|
|
max_decode_seq_len=0,
|
|
context_lens_tensor=None,
|
|
block_tables=None,
|
|
use_cuda_graph=False,
|
|
)
|
|
|
|
dummy: dict[str, str] = {}
|
|
|
|
full_text_row_masked_out_mask = MllamaForConditionalGeneration\
|
|
.get_full_text_row_masked_out_mask(dummy,
|
|
attn_data,
|
|
torch.get_default_device())
|
|
|
|
full_text_row_masked_out_mask = full_text_row_masked_out_mask.squeeze()
|
|
full_text_row_masked_out_mask = full_text_row_masked_out_mask.tolist()
|
|
|
|
idx = 0
|
|
assert len(full_text_row_masked_out_mask) == num_prefill_tokens
|
|
for i, seq_len in enumerate(seq_lens):
|
|
must_be_masked = input_indices[i] != TEXT_ONLY
|
|
for _ in range(seq_len):
|
|
assert full_text_row_masked_out_mask[idx] == must_be_masked, \
|
|
f"full_text_row_masked_out_mask[{idx}] must be " \
|
|
f"'{must_be_masked}' "
|
|
idx += 1
|