Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

105 lines
3.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from functools import partial
from typing import List, Optional, Tuple, Type
import pytest
from PIL import Image
from vllm.inputs.data import ExplicitEncoderDecoderPrompt
from vllm.sequence import SampleLogprobs
from ....conftest import HfRunner, VllmRunner
from ...utils import check_logprobs_close
Florence2Prompt = partial(ExplicitEncoderDecoderPrompt,
decoder_prompt=None,
mm_processor_kwargs=None)
MODELS = ["microsoft/Florence-2-base"]
# Florence-2 uses BartFastTokenizer which can't be loaded from AutoTokenizer
# Therefore, we borrow the BartTokenizer from the original Bart model
TOKENIZER = "facebook/bart-base"
PROMPTS = [
Florence2Prompt(encoder_prompt="<CAPTION>"),
Florence2Prompt(encoder_prompt="<DETAILED_CAPTION>"),
Florence2Prompt(encoder_prompt="<MORE_DETAILED_CAPTION>"),
Florence2Prompt(encoder_prompt="<CAPTION_TO_PHRASE_GROUNDING>"),
Florence2Prompt(encoder_prompt="<DENSE_REGION_CAPTION>"),
Florence2Prompt(encoder_prompt="<REGION_PROPOSAL>"),
Florence2Prompt(encoder_prompt="<OCR_WITH_REGION>"),
Florence2Prompt(encoder_prompt="<OCR>"),
Florence2Prompt(encoder_prompt="<OD>"),
]
def vllm_to_hf_output(vllm_output: Tuple[List[int], str,
Optional[SampleLogprobs]], ):
"""Sanitize vllm output to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output
hf_output_str = "</s><s>" + output_str + "</s>"
return output_ids, hf_output_str, out_logprobs
def run_test(
hf_runner: Type[HfRunner],
vllm_runner: Type[VllmRunner],
prompts: List[ExplicitEncoderDecoderPrompt],
model: str,
*,
dtype: str,
max_tokens: int,
num_logprobs: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
) -> None:
with vllm_runner(model,
tokenizer_name=TOKENIZER,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
vllm_outputs = vllm_model.generate_encoder_decoder_greedy_logprobs(
prompts, max_tokens, num_logprobs)
# Florence-2 processors require image inputs
dummy_image = Image.new(mode="RGB", size=(2, 2))
with hf_runner(model, dtype=dtype, skip_tokenizer_init=True) as hf_model:
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.language_model.lm_head
hf_outputs = (hf_model.generate_encoder_decoder_greedy_logprobs_limit(
prompts,
max_tokens,
num_logprobs,
images=[dummy_image] * len(prompts),
))
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=[
vllm_to_hf_output(vllm_output) for vllm_output in vllm_outputs
],
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float", "bfloat16"])
@pytest.mark.parametrize("max_tokens", [64])
@pytest.mark.parametrize("num_logprobs", [5])
def test_models(hf_runner, vllm_runner, model, dtype, max_tokens,
num_logprobs) -> None:
run_test(
hf_runner,
vllm_runner,
PROMPTS,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
tensor_parallel_size=1,
)