
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
205 lines
6.2 KiB
Python
205 lines
6.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Adapted from
|
|
# https://github.com/fmmoret/vllm/blob/fm-support-lora-on-quantized-models/tests/lora/test_llama.py
|
|
from dataclasses import dataclass
|
|
from typing import List
|
|
|
|
import pytest
|
|
|
|
import vllm
|
|
from vllm.distributed import cleanup_dist_env_and_memory
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.platforms import current_platform
|
|
|
|
|
|
@dataclass
|
|
class ModelWithQuantization:
|
|
model_path: str
|
|
quantization: str
|
|
|
|
|
|
MODELS: List[ModelWithQuantization]
|
|
#AWQ quantization is currently not supported in ROCm.
|
|
if current_platform.is_rocm():
|
|
MODELS = [
|
|
ModelWithQuantization(
|
|
model_path="TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ",
|
|
quantization="GPTQ"),
|
|
]
|
|
else:
|
|
MODELS = [
|
|
ModelWithQuantization(
|
|
model_path="TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ",
|
|
quantization="AWQ"),
|
|
ModelWithQuantization(
|
|
model_path="TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ",
|
|
quantization="GPTQ"),
|
|
]
|
|
|
|
|
|
def do_sample(llm: vllm.LLM,
|
|
lora_path: str,
|
|
lora_id: int,
|
|
max_tokens: int = 256) -> List[str]:
|
|
raw_prompts = [
|
|
"Give me an orange-ish brown color",
|
|
"Give me a neon pink color",
|
|
]
|
|
|
|
def format_prompt_tuples(prompt):
|
|
return f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
|
|
|
prompts = [format_prompt_tuples(p) for p in raw_prompts]
|
|
|
|
sampling_params = vllm.SamplingParams(temperature=0,
|
|
max_tokens=max_tokens,
|
|
stop=["<|im_end|>"])
|
|
outputs = llm.generate(
|
|
prompts,
|
|
sampling_params,
|
|
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
|
if lora_id else None)
|
|
# Print the outputs.
|
|
generated_texts: List[str] = []
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
generated_texts.append(generated_text)
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
return generated_texts
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("tp_size", [1])
|
|
def test_quant_model_lora(tinyllama_lora_files, num_gpus_available, model,
|
|
tp_size):
|
|
if num_gpus_available < tp_size and \
|
|
tp_size > 1 and current_platform.is_cuda_alike():
|
|
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
|
|
|
|
llm = vllm.LLM(
|
|
model=model.model_path,
|
|
enable_lora=True,
|
|
max_num_seqs=16,
|
|
max_loras=4,
|
|
max_model_len=400,
|
|
tensor_parallel_size=tp_size,
|
|
gpu_memory_utilization=0.2, #avoid OOM
|
|
quantization=model.quantization,
|
|
trust_remote_code=True,
|
|
enable_chunked_prefill=True)
|
|
|
|
if model.quantization is None:
|
|
expected_no_lora_output = [
|
|
"Here are some examples of orange-brown colors",
|
|
"I'm sorry, I don't have"
|
|
]
|
|
expected_lora_output = [
|
|
"#ff8050",
|
|
"#ff8080",
|
|
]
|
|
elif model.quantization == "AWQ":
|
|
expected_no_lora_output = [
|
|
"I'm sorry, I don't understand",
|
|
"I'm sorry, I don't understand",
|
|
]
|
|
expected_lora_output = [
|
|
"#f07700: A v",
|
|
"#f00000: A v",
|
|
]
|
|
elif model.quantization == "GPTQ":
|
|
expected_no_lora_output = [
|
|
"I'm sorry, I don't have",
|
|
"I'm sorry, I don't have",
|
|
]
|
|
expected_lora_output = [
|
|
"#f08800: This is",
|
|
"#f07788 \n#",
|
|
]
|
|
|
|
def expect_match(output, expected_output):
|
|
# HACK: GPTQ lora outputs are just incredibly unstable.
|
|
# Assert that the outputs changed.
|
|
if (model.quantization == "GPTQ"
|
|
and expected_output is expected_lora_output):
|
|
assert output != expected_no_lora_output
|
|
for i, o in enumerate(output):
|
|
assert o.startswith(
|
|
'#'), f"Expected example {i} to start with # but got {o}"
|
|
return
|
|
assert output == expected_output
|
|
|
|
max_tokens = 10
|
|
|
|
print("lora adapter created")
|
|
output = do_sample(llm,
|
|
tinyllama_lora_files,
|
|
lora_id=0,
|
|
max_tokens=max_tokens)
|
|
expect_match(output, expected_no_lora_output)
|
|
|
|
print("lora 1")
|
|
output = do_sample(llm,
|
|
tinyllama_lora_files,
|
|
lora_id=1,
|
|
max_tokens=max_tokens)
|
|
expect_match(output, expected_lora_output)
|
|
|
|
print("no lora")
|
|
output = do_sample(llm,
|
|
tinyllama_lora_files,
|
|
lora_id=0,
|
|
max_tokens=max_tokens)
|
|
expect_match(output, expected_no_lora_output)
|
|
|
|
print("lora 2")
|
|
output = do_sample(llm,
|
|
tinyllama_lora_files,
|
|
lora_id=2,
|
|
max_tokens=max_tokens)
|
|
expect_match(output, expected_lora_output)
|
|
|
|
print("removing lora")
|
|
|
|
del llm
|
|
cleanup_dist_env_and_memory()
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
def test_quant_model_tp_equality(tinyllama_lora_files, num_gpus_available,
|
|
model):
|
|
if num_gpus_available < 2:
|
|
pytest.skip(f"Not enough GPUs for tensor parallelism {2}")
|
|
|
|
llm_tp1 = vllm.LLM(
|
|
model=model.model_path,
|
|
enable_lora=True,
|
|
max_num_seqs=16,
|
|
max_loras=4,
|
|
tensor_parallel_size=1,
|
|
gpu_memory_utilization=0.2, #avoid OOM
|
|
quantization=model.quantization,
|
|
trust_remote_code=True,
|
|
enable_chunked_prefill=True)
|
|
output_tp1 = do_sample(llm_tp1, tinyllama_lora_files, lora_id=1)
|
|
|
|
del llm_tp1
|
|
cleanup_dist_env_and_memory()
|
|
|
|
llm_tp2 = vllm.LLM(
|
|
model=model.model_path,
|
|
enable_lora=True,
|
|
max_num_seqs=16,
|
|
max_loras=4,
|
|
tensor_parallel_size=2,
|
|
gpu_memory_utilization=0.2, #avoid OOM
|
|
quantization=model.quantization,
|
|
enable_chunked_prefill=True)
|
|
output_tp2 = do_sample(llm_tp2, tinyllama_lora_files, lora_id=1)
|
|
|
|
del llm_tp2
|
|
cleanup_dist_env_and_memory()
|
|
|
|
assert output_tp1 == output_tp2
|