vllm/tests/lora/test_quant_model.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

205 lines
6.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/fmmoret/vllm/blob/fm-support-lora-on-quantized-models/tests/lora/test_llama.py
from dataclasses import dataclass
from typing import List
import pytest
import vllm
from vllm.distributed import cleanup_dist_env_and_memory
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
@dataclass
class ModelWithQuantization:
model_path: str
quantization: str
MODELS: List[ModelWithQuantization]
#AWQ quantization is currently not supported in ROCm.
if current_platform.is_rocm():
MODELS = [
ModelWithQuantization(
model_path="TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ",
quantization="GPTQ"),
]
else:
MODELS = [
ModelWithQuantization(
model_path="TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ",
quantization="AWQ"),
ModelWithQuantization(
model_path="TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ",
quantization="GPTQ"),
]
def do_sample(llm: vllm.LLM,
lora_path: str,
lora_id: int,
max_tokens: int = 256) -> List[str]:
raw_prompts = [
"Give me an orange-ish brown color",
"Give me a neon pink color",
]
def format_prompt_tuples(prompt):
return f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
prompts = [format_prompt_tuples(p) for p in raw_prompts]
sampling_params = vllm.SamplingParams(temperature=0,
max_tokens=max_tokens,
stop=["<|im_end|>"])
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id else None)
# Print the outputs.
generated_texts: List[str] = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
return generated_texts
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("tp_size", [1])
def test_quant_model_lora(tinyllama_lora_files, num_gpus_available, model,
tp_size):
if num_gpus_available < tp_size and \
tp_size > 1 and current_platform.is_cuda_alike():
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
llm = vllm.LLM(
model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
max_model_len=400,
tensor_parallel_size=tp_size,
gpu_memory_utilization=0.2, #avoid OOM
quantization=model.quantization,
trust_remote_code=True,
enable_chunked_prefill=True)
if model.quantization is None:
expected_no_lora_output = [
"Here are some examples of orange-brown colors",
"I'm sorry, I don't have"
]
expected_lora_output = [
"#ff8050",
"#ff8080",
]
elif model.quantization == "AWQ":
expected_no_lora_output = [
"I'm sorry, I don't understand",
"I'm sorry, I don't understand",
]
expected_lora_output = [
"#f07700: A v",
"#f00000: A v",
]
elif model.quantization == "GPTQ":
expected_no_lora_output = [
"I'm sorry, I don't have",
"I'm sorry, I don't have",
]
expected_lora_output = [
"#f08800: This is",
"#f07788 \n#",
]
def expect_match(output, expected_output):
# HACK: GPTQ lora outputs are just incredibly unstable.
# Assert that the outputs changed.
if (model.quantization == "GPTQ"
and expected_output is expected_lora_output):
assert output != expected_no_lora_output
for i, o in enumerate(output):
assert o.startswith(
'#'), f"Expected example {i} to start with # but got {o}"
return
assert output == expected_output
max_tokens = 10
print("lora adapter created")
output = do_sample(llm,
tinyllama_lora_files,
lora_id=0,
max_tokens=max_tokens)
expect_match(output, expected_no_lora_output)
print("lora 1")
output = do_sample(llm,
tinyllama_lora_files,
lora_id=1,
max_tokens=max_tokens)
expect_match(output, expected_lora_output)
print("no lora")
output = do_sample(llm,
tinyllama_lora_files,
lora_id=0,
max_tokens=max_tokens)
expect_match(output, expected_no_lora_output)
print("lora 2")
output = do_sample(llm,
tinyllama_lora_files,
lora_id=2,
max_tokens=max_tokens)
expect_match(output, expected_lora_output)
print("removing lora")
del llm
cleanup_dist_env_and_memory()
@pytest.mark.parametrize("model", MODELS)
def test_quant_model_tp_equality(tinyllama_lora_files, num_gpus_available,
model):
if num_gpus_available < 2:
pytest.skip(f"Not enough GPUs for tensor parallelism {2}")
llm_tp1 = vllm.LLM(
model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
tensor_parallel_size=1,
gpu_memory_utilization=0.2, #avoid OOM
quantization=model.quantization,
trust_remote_code=True,
enable_chunked_prefill=True)
output_tp1 = do_sample(llm_tp1, tinyllama_lora_files, lora_id=1)
del llm_tp1
cleanup_dist_env_and_memory()
llm_tp2 = vllm.LLM(
model=model.model_path,
enable_lora=True,
max_num_seqs=16,
max_loras=4,
tensor_parallel_size=2,
gpu_memory_utilization=0.2, #avoid OOM
quantization=model.quantization,
enable_chunked_prefill=True)
output_tp2 = do_sample(llm_tp2, tinyllama_lora_files, lora_id=1)
del llm_tp2
cleanup_dist_env_and_memory()
assert output_tp1 == output_tp2