
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
402 lines
9.4 KiB
Python
402 lines
9.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""
|
|
This script is mainly used to tests various hidden_sizes. We have collected the
|
|
hidden_sizes included in the LoRA models currently supported by vLLM. It tests
|
|
whether the corresponding Triton kernel can run normally when tensor parallelism
|
|
is set to [1, 2, 4, 8, 16, 32, 64].
|
|
"""
|
|
from threading import Lock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import vllm.lora.ops.triton_ops # noqa: F401
|
|
from vllm.lora.ops.torch_ops import (bgmv_expand, bgmv_expand_slice,
|
|
bgmv_shrink, sgmv_expand,
|
|
sgmv_expand_slice, sgmv_shrink)
|
|
from vllm.lora.ops.triton_ops.utils import _LORA_A_PTR_DICT, _LORA_B_PTR_DICT
|
|
from vllm.platforms import current_platform
|
|
|
|
from .utils import (assert_close, generate_data,
|
|
generate_data_for_expand_nslices,
|
|
generate_data_for_nslices)
|
|
|
|
HIDDEN_SIZES = [
|
|
128,
|
|
256,
|
|
512,
|
|
896,
|
|
1024,
|
|
1152,
|
|
1216,
|
|
1280,
|
|
1536,
|
|
1664,
|
|
2048,
|
|
2240,
|
|
2304,
|
|
2368,
|
|
2432,
|
|
2560,
|
|
2752,
|
|
3072,
|
|
3328,
|
|
3456,
|
|
3584,
|
|
3712,
|
|
4096,
|
|
4480,
|
|
4608,
|
|
4736,
|
|
4864,
|
|
5120,
|
|
5504,
|
|
5632,
|
|
5888,
|
|
6144,
|
|
6400,
|
|
6848,
|
|
6912,
|
|
7168,
|
|
7424,
|
|
8192,
|
|
8960,
|
|
9216,
|
|
9472,
|
|
10240,
|
|
11008,
|
|
11264,
|
|
13824,
|
|
14336,
|
|
14784,
|
|
14848,
|
|
15360,
|
|
18944,
|
|
22016,
|
|
22528,
|
|
24576,
|
|
27392,
|
|
27648,
|
|
29568,
|
|
29696,
|
|
32000,
|
|
32256,
|
|
32512,
|
|
32768,
|
|
33024,
|
|
36864,
|
|
43264,
|
|
49152,
|
|
49408,
|
|
60544,
|
|
60672,
|
|
64000,
|
|
64256,
|
|
102400,
|
|
102656,
|
|
128000,
|
|
128256,
|
|
]
|
|
#The size of TP
|
|
divisibility = [1, 2, 8, 16, 64]
|
|
|
|
all_hidden_size = []
|
|
for div in divisibility:
|
|
for hidden_size in HIDDEN_SIZES:
|
|
all_hidden_size.append(hidden_size // div)
|
|
|
|
HIDDEN_SIZES = list(set(all_hidden_size))
|
|
|
|
BATCHES = [4]
|
|
NUM_LORA = [4]
|
|
DTYPES = [torch.float16, torch.bfloat16]
|
|
MAX_RANKS = [32]
|
|
SCALES = [0.5]
|
|
SEED = [0]
|
|
DEVICES = [f"cuda:{0}"]
|
|
|
|
_dict_lock = Lock()
|
|
|
|
|
|
@pytest.mark.parametrize("batches", BATCHES)
|
|
@pytest.mark.parametrize("num_loras", NUM_LORA)
|
|
@pytest.mark.parametrize("rank", MAX_RANKS)
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
@pytest.mark.parametrize("scaling", SCALES)
|
|
@pytest.mark.parametrize("nslices", [1, 2, 3])
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("op_type", ["shrink", "expand"])
|
|
@pytest.mark.parametrize("seed", SEED)
|
|
@pytest.mark.parametrize("device", DEVICES)
|
|
def test_punica_sgmv(
|
|
batches: int,
|
|
num_loras: int,
|
|
rank: int,
|
|
hidden_size: int,
|
|
scaling: float,
|
|
nslices: int,
|
|
dtype: torch.dtype,
|
|
op_type: str,
|
|
seed: int,
|
|
device: str,
|
|
):
|
|
torch.set_default_device(device)
|
|
current_platform.seed_everything(seed)
|
|
|
|
seq_length = 128
|
|
(
|
|
inputs_tensor,
|
|
lora_weights_lst,
|
|
our_out_tensor,
|
|
ref_out_tensor,
|
|
b_seq_start_loc,
|
|
lora_indices_tensor,
|
|
seq_len_tensor,
|
|
indices,
|
|
) = generate_data_for_nslices(
|
|
batches,
|
|
hidden_size,
|
|
num_loras,
|
|
rank,
|
|
seq_length,
|
|
nslices,
|
|
dtype,
|
|
op_type,
|
|
device,
|
|
)
|
|
max_seq_length = seq_len_tensor.max()
|
|
token_nums = seq_len_tensor.sum().item()
|
|
if isinstance(max_seq_length, tuple):
|
|
max_seq_length = max_seq_length[0].item()
|
|
else:
|
|
max_seq_length = max_seq_length.item()
|
|
if op_type == "shrink":
|
|
# Preventing cache error pointer.
|
|
with _dict_lock:
|
|
_LORA_A_PTR_DICT.clear()
|
|
torch.ops.vllm.sgmv_shrink(
|
|
inputs_tensor,
|
|
lora_weights_lst,
|
|
our_out_tensor,
|
|
b_seq_start_loc,
|
|
seq_len_tensor,
|
|
lora_indices_tensor,
|
|
batches,
|
|
max_seq_length,
|
|
token_nums,
|
|
scaling,
|
|
)
|
|
for index in range(nslices):
|
|
sgmv_shrink(
|
|
inputs_tensor,
|
|
lora_weights_lst[index],
|
|
ref_out_tensor[index],
|
|
b_seq_start_loc,
|
|
seq_len_tensor,
|
|
lora_indices_tensor,
|
|
batches,
|
|
max_seq_length,
|
|
token_nums,
|
|
scaling,
|
|
)
|
|
|
|
else:
|
|
with _dict_lock:
|
|
_LORA_B_PTR_DICT.clear()
|
|
torch.ops.vllm.sgmv_expand(
|
|
inputs_tensor,
|
|
lora_weights_lst,
|
|
our_out_tensor,
|
|
b_seq_start_loc,
|
|
seq_len_tensor,
|
|
lora_indices_tensor,
|
|
batches,
|
|
max_seq_length,
|
|
token_nums,
|
|
offset_start=0,
|
|
add_inputs=True,
|
|
)
|
|
if nslices == 1:
|
|
# Verify the torch's sgmv_expand op
|
|
sgmv_expand(
|
|
inputs_tensor[0],
|
|
lora_weights_lst[0],
|
|
ref_out_tensor,
|
|
b_seq_start_loc,
|
|
seq_len_tensor,
|
|
lora_indices_tensor,
|
|
batches,
|
|
max_seq_length,
|
|
token_nums,
|
|
add_inputs=True,
|
|
)
|
|
else:
|
|
slice_offset = 0
|
|
for index in range(nslices):
|
|
lora_weights = lora_weights_lst[index]
|
|
sgmv_expand_slice(
|
|
inputs_tensor[index],
|
|
lora_weights,
|
|
ref_out_tensor,
|
|
b_seq_start_loc,
|
|
seq_len_tensor,
|
|
lora_indices_tensor,
|
|
batches,
|
|
max_seq_length,
|
|
token_nums,
|
|
slice_offset,
|
|
hidden_size,
|
|
add_inputs=True,
|
|
)
|
|
slice_offset += hidden_size
|
|
|
|
assert_close(our_out_tensor, ref_out_tensor)
|
|
|
|
|
|
@pytest.mark.parametrize("batches", BATCHES)
|
|
@pytest.mark.parametrize("num_loras", NUM_LORA)
|
|
@pytest.mark.parametrize("rank", MAX_RANKS)
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
@pytest.mark.parametrize("scaling", SCALES)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("op_type", ["shrink", "expand"])
|
|
@pytest.mark.parametrize("seed", SEED)
|
|
@pytest.mark.parametrize("device", DEVICES)
|
|
def test_punica_bgmv(
|
|
batches: int,
|
|
num_loras: int,
|
|
rank: int,
|
|
hidden_size: int,
|
|
scaling: float,
|
|
dtype: torch.dtype,
|
|
op_type: str,
|
|
seed: int,
|
|
device: str,
|
|
):
|
|
torch.set_default_device(device)
|
|
current_platform.seed_everything(seed)
|
|
|
|
seq_length = 1
|
|
(
|
|
inputs_tensor,
|
|
lora_weights,
|
|
our_out_tensor,
|
|
ref_out_tensor,
|
|
b_seq_start_loc,
|
|
lora_indices_tensor,
|
|
seq_len_tensor,
|
|
indices,
|
|
) = generate_data(
|
|
batches,
|
|
hidden_size,
|
|
num_loras,
|
|
rank,
|
|
seq_length,
|
|
dtype,
|
|
op_type,
|
|
device,
|
|
)
|
|
if op_type == "shrink":
|
|
torch.ops.vllm.bgmv_shrink(
|
|
inputs_tensor,
|
|
lora_weights,
|
|
our_out_tensor,
|
|
indices,
|
|
scaling,
|
|
)
|
|
|
|
bgmv_shrink(
|
|
inputs_tensor,
|
|
lora_weights,
|
|
ref_out_tensor,
|
|
indices,
|
|
scaling,
|
|
)
|
|
|
|
else:
|
|
torch.ops.vllm.bgmv_expand(
|
|
inputs_tensor,
|
|
lora_weights,
|
|
our_out_tensor,
|
|
indices,
|
|
add_inputs=True,
|
|
)
|
|
bgmv_expand(
|
|
inputs_tensor,
|
|
lora_weights,
|
|
ref_out_tensor,
|
|
indices,
|
|
add_inputs=True,
|
|
)
|
|
|
|
if op_type == "shrink":
|
|
ref_out_tensor = ref_out_tensor.to(torch.float32)
|
|
assert_close(our_out_tensor, ref_out_tensor)
|
|
|
|
|
|
@pytest.mark.parametrize("batches", BATCHES)
|
|
@pytest.mark.parametrize("num_loras", NUM_LORA)
|
|
@pytest.mark.parametrize("rank", MAX_RANKS)
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
@pytest.mark.parametrize("nslices", [2, 3])
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("seed", SEED)
|
|
@pytest.mark.parametrize("device", DEVICES)
|
|
def test_punica_bgmv_expand_nslices(
|
|
batches: int,
|
|
num_loras: int,
|
|
rank: int,
|
|
hidden_size: int,
|
|
nslices: int,
|
|
dtype: torch.dtype,
|
|
seed: int,
|
|
device: str,
|
|
):
|
|
torch.set_default_device(device)
|
|
current_platform.seed_everything(seed)
|
|
|
|
seq_length = 1
|
|
(
|
|
inputs_tensor,
|
|
lora_weights_lst,
|
|
our_outputs,
|
|
ref_outputs,
|
|
b_seq_start_loc,
|
|
lora_indices_tensor,
|
|
seq_len_tensor,
|
|
indices,
|
|
) = generate_data_for_expand_nslices(
|
|
batches,
|
|
hidden_size,
|
|
num_loras,
|
|
rank,
|
|
seq_length,
|
|
dtype,
|
|
nslices,
|
|
device,
|
|
)
|
|
slice_offset = 0
|
|
for index in range(nslices):
|
|
lora_weights = lora_weights_lst[index]
|
|
torch.ops.vllm.bgmv_expand_slice(
|
|
inputs_tensor,
|
|
lora_weights,
|
|
our_outputs,
|
|
indices,
|
|
slice_offset,
|
|
slice_size=hidden_size,
|
|
add_inputs=True,
|
|
)
|
|
bgmv_expand_slice(
|
|
inputs_tensor,
|
|
lora_weights,
|
|
ref_outputs,
|
|
indices,
|
|
slice_offset,
|
|
slice_size=hidden_size,
|
|
add_inputs=True,
|
|
)
|
|
|
|
slice_offset += hidden_size
|
|
assert_close(our_outputs, ref_outputs)
|