vllm/tests/lora/test_chatglm3_tp.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

108 lines
4.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import List
import vllm
from tests.utils import fork_new_process_for_each_test
from vllm.lora.request import LoRARequest
from ..utils import multi_gpu_test
MODEL_PATH = "THUDM/chatglm3-6b"
PROMPT_TEMPLATE = """I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.\n"\n##Instruction:\nconcert_singer contains tables such as stadium, singer, concert, singer_in_concert. Table stadium has columns such as Stadium_ID, Location, Name, Capacity, Highest, Lowest, Average. Stadium_ID is the primary key.\nTable singer has columns such as Singer_ID, Name, Country, Song_Name, Song_release_year, Age, Is_male. Singer_ID is the primary key.\nTable concert has columns such as concert_ID, concert_Name, Theme, Stadium_ID, Year. concert_ID is the primary key.\nTable singer_in_concert has columns such as concert_ID, Singer_ID. concert_ID is the primary key.\nThe Stadium_ID of concert is the foreign key of Stadium_ID of stadium.\nThe Singer_ID of singer_in_concert is the foreign key of Singer_ID of singer.\nThe concert_ID of singer_in_concert is the foreign key of concert_ID of concert.\n\n###Input:\n{query}\n\n###Response:""" # noqa: E501
EXPECTED_LORA_OUTPUT = [
"SELECT count(*) FROM singer",
"SELECT avg(age) , min(age) , max(age) FROM singer WHERE country = 'France'", # noqa: E501
"SELECT name , country , age FROM singer ORDER BY age",
]
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
prompts = [
PROMPT_TEMPLATE.format(query="How many singers do we have?"),
PROMPT_TEMPLATE.format(
query=
"What is the average, minimum, and maximum age of all singers from France?" # noqa: E501
),
PROMPT_TEMPLATE.format(
query=
"Show name, country, age for all singers ordered by age from the oldest to the youngest." # noqa: E501
),
]
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=32)
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id else None)
# Print the outputs.
generated_texts: List[str] = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
return generated_texts
@fork_new_process_for_each_test
def test_chatglm3_lora(chatglm3_lora_files):
llm = vllm.LLM(MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
max_lora_rank=64,
tensor_parallel_size=1,
trust_remote_code=True,
enable_chunked_prefill=True)
output1 = do_sample(llm, chatglm3_lora_files, lora_id=1)
for i in range(len(EXPECTED_LORA_OUTPUT)):
assert output1[i] == EXPECTED_LORA_OUTPUT[i]
output2 = do_sample(llm, chatglm3_lora_files, lora_id=2)
for i in range(len(EXPECTED_LORA_OUTPUT)):
assert output2[i] == EXPECTED_LORA_OUTPUT[i]
@multi_gpu_test(num_gpus=4)
@fork_new_process_for_each_test
def test_chatglm3_lora_tp4(chatglm3_lora_files):
llm = vllm.LLM(MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
max_lora_rank=64,
tensor_parallel_size=4,
trust_remote_code=True,
fully_sharded_loras=False,
enable_chunked_prefill=True)
output1 = do_sample(llm, chatglm3_lora_files, lora_id=1)
for i in range(len(EXPECTED_LORA_OUTPUT)):
assert output1[i] == EXPECTED_LORA_OUTPUT[i]
output2 = do_sample(llm, chatglm3_lora_files, lora_id=2)
for i in range(len(EXPECTED_LORA_OUTPUT)):
assert output2[i] == EXPECTED_LORA_OUTPUT[i]
@multi_gpu_test(num_gpus=4)
@fork_new_process_for_each_test
def test_chatglm3_lora_tp4_fully_sharded_loras(chatglm3_lora_files):
llm = vllm.LLM(MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
max_lora_rank=64,
tensor_parallel_size=4,
trust_remote_code=True,
fully_sharded_loras=True,
enable_chunked_prefill=True)
output1 = do_sample(llm, chatglm3_lora_files, lora_id=1)
for i in range(len(EXPECTED_LORA_OUTPUT)):
assert output1[i] == EXPECTED_LORA_OUTPUT[i]
output2 = do_sample(llm, chatglm3_lora_files, lora_id=2)
for i in range(len(EXPECTED_LORA_OUTPUT)):
assert output2[i] == EXPECTED_LORA_OUTPUT[i]