
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
108 lines
4.8 KiB
Python
108 lines
4.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from typing import List
|
|
|
|
import vllm
|
|
from tests.utils import fork_new_process_for_each_test
|
|
from vllm.lora.request import LoRARequest
|
|
|
|
from ..utils import multi_gpu_test
|
|
|
|
MODEL_PATH = "THUDM/chatglm3-6b"
|
|
|
|
PROMPT_TEMPLATE = """I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.\n"\n##Instruction:\nconcert_singer contains tables such as stadium, singer, concert, singer_in_concert. Table stadium has columns such as Stadium_ID, Location, Name, Capacity, Highest, Lowest, Average. Stadium_ID is the primary key.\nTable singer has columns such as Singer_ID, Name, Country, Song_Name, Song_release_year, Age, Is_male. Singer_ID is the primary key.\nTable concert has columns such as concert_ID, concert_Name, Theme, Stadium_ID, Year. concert_ID is the primary key.\nTable singer_in_concert has columns such as concert_ID, Singer_ID. concert_ID is the primary key.\nThe Stadium_ID of concert is the foreign key of Stadium_ID of stadium.\nThe Singer_ID of singer_in_concert is the foreign key of Singer_ID of singer.\nThe concert_ID of singer_in_concert is the foreign key of concert_ID of concert.\n\n###Input:\n{query}\n\n###Response:""" # noqa: E501
|
|
|
|
EXPECTED_LORA_OUTPUT = [
|
|
"SELECT count(*) FROM singer",
|
|
"SELECT avg(age) , min(age) , max(age) FROM singer WHERE country = 'France'", # noqa: E501
|
|
"SELECT name , country , age FROM singer ORDER BY age",
|
|
]
|
|
|
|
|
|
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
|
|
prompts = [
|
|
PROMPT_TEMPLATE.format(query="How many singers do we have?"),
|
|
PROMPT_TEMPLATE.format(
|
|
query=
|
|
"What is the average, minimum, and maximum age of all singers from France?" # noqa: E501
|
|
),
|
|
PROMPT_TEMPLATE.format(
|
|
query=
|
|
"Show name, country, age for all singers ordered by age from the oldest to the youngest." # noqa: E501
|
|
),
|
|
]
|
|
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=32)
|
|
outputs = llm.generate(
|
|
prompts,
|
|
sampling_params,
|
|
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
|
if lora_id else None)
|
|
# Print the outputs.
|
|
generated_texts: List[str] = []
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text.strip()
|
|
generated_texts.append(generated_text)
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
return generated_texts
|
|
|
|
|
|
@fork_new_process_for_each_test
|
|
def test_chatglm3_lora(chatglm3_lora_files):
|
|
llm = vllm.LLM(MODEL_PATH,
|
|
max_model_len=1024,
|
|
enable_lora=True,
|
|
max_loras=4,
|
|
max_lora_rank=64,
|
|
tensor_parallel_size=1,
|
|
trust_remote_code=True,
|
|
enable_chunked_prefill=True)
|
|
|
|
output1 = do_sample(llm, chatglm3_lora_files, lora_id=1)
|
|
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
|
assert output1[i] == EXPECTED_LORA_OUTPUT[i]
|
|
output2 = do_sample(llm, chatglm3_lora_files, lora_id=2)
|
|
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
|
assert output2[i] == EXPECTED_LORA_OUTPUT[i]
|
|
|
|
|
|
@multi_gpu_test(num_gpus=4)
|
|
@fork_new_process_for_each_test
|
|
def test_chatglm3_lora_tp4(chatglm3_lora_files):
|
|
llm = vllm.LLM(MODEL_PATH,
|
|
max_model_len=1024,
|
|
enable_lora=True,
|
|
max_loras=4,
|
|
max_lora_rank=64,
|
|
tensor_parallel_size=4,
|
|
trust_remote_code=True,
|
|
fully_sharded_loras=False,
|
|
enable_chunked_prefill=True)
|
|
|
|
output1 = do_sample(llm, chatglm3_lora_files, lora_id=1)
|
|
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
|
assert output1[i] == EXPECTED_LORA_OUTPUT[i]
|
|
output2 = do_sample(llm, chatglm3_lora_files, lora_id=2)
|
|
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
|
assert output2[i] == EXPECTED_LORA_OUTPUT[i]
|
|
|
|
|
|
@multi_gpu_test(num_gpus=4)
|
|
@fork_new_process_for_each_test
|
|
def test_chatglm3_lora_tp4_fully_sharded_loras(chatglm3_lora_files):
|
|
llm = vllm.LLM(MODEL_PATH,
|
|
max_model_len=1024,
|
|
enable_lora=True,
|
|
max_loras=4,
|
|
max_lora_rank=64,
|
|
tensor_parallel_size=4,
|
|
trust_remote_code=True,
|
|
fully_sharded_loras=True,
|
|
enable_chunked_prefill=True)
|
|
output1 = do_sample(llm, chatglm3_lora_files, lora_id=1)
|
|
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
|
assert output1[i] == EXPECTED_LORA_OUTPUT[i]
|
|
output2 = do_sample(llm, chatglm3_lora_files, lora_id=2)
|
|
for i in range(len(EXPECTED_LORA_OUTPUT)):
|
|
assert output2[i] == EXPECTED_LORA_OUTPUT[i]
|