vllm/tests/lora/conftest.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

309 lines
9.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import tempfile
from collections import OrderedDict
from typing import Dict, List, TypedDict
from unittest.mock import MagicMock, patch
import pytest
import safetensors
import torch
import torch.nn as nn
from huggingface_hub import snapshot_download
import vllm
from vllm.config import LoRAConfig
from vllm.distributed import (cleanup_dist_env_and_memory,
init_distributed_environment,
initialize_model_parallel)
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.model_loader import get_model
from vllm.platforms import current_platform
class ContextIDInfo(TypedDict):
lora_id: int
context_length: str
class ContextInfo(TypedDict):
lora: str
context_length: str
LONG_LORA_INFOS: List[ContextIDInfo] = [{
"lora_id": 1,
"context_length": "16k",
}, {
"lora_id": 2,
"context_length": "16k",
}, {
"lora_id": 3,
"context_length": "32k",
}]
@pytest.fixture()
def should_do_global_cleanup_after_test(request) -> bool:
"""Allow subdirectories to skip global cleanup by overriding this fixture.
This can provide a ~10x speedup for non-GPU unit tests since they don't need
to initialize torch.
"""
return not request.node.get_closest_marker("skip_global_cleanup")
@pytest.fixture(autouse=True)
def cleanup_fixture(should_do_global_cleanup_after_test: bool):
yield
if should_do_global_cleanup_after_test:
cleanup_dist_env_and_memory(shutdown_ray=True)
@pytest.fixture
def dist_init():
temp_file = tempfile.mkstemp()[1]
backend = "nccl"
if current_platform.is_cpu():
backend = "gloo"
init_distributed_environment(world_size=1,
rank=0,
distributed_init_method=f"file://{temp_file}",
local_rank=0,
backend=backend)
initialize_model_parallel(1, 1)
yield
cleanup_dist_env_and_memory(shutdown_ray=True)
@pytest.fixture
def dist_init_torch_only():
if torch.distributed.is_initialized():
return
backend = "nccl"
if current_platform.is_cpu():
backend = "gloo"
temp_file = tempfile.mkstemp()[1]
torch.distributed.init_process_group(world_size=1,
rank=0,
init_method=f"file://{temp_file}",
backend=backend)
@pytest.fixture
def dummy_model() -> nn.Module:
model = nn.Sequential(
OrderedDict([
("dense1", ColumnParallelLinear(764, 100)),
("dense2", RowParallelLinear(100, 50)),
(
"layer1",
nn.Sequential(
OrderedDict([
("dense1", ColumnParallelLinear(100, 10)),
("dense2", RowParallelLinear(10, 50)),
])),
),
("act2", nn.ReLU()),
("output", ColumnParallelLinear(50, 10)),
("outact", nn.Sigmoid()),
# Special handling for lm_head & sampler
("lm_head", ParallelLMHead(512, 10)),
("logits_processor", LogitsProcessor(512)),
("sampler", Sampler())
]))
model.config = MagicMock()
return model
@pytest.fixture
def dummy_model_gate_up() -> nn.Module:
model = nn.Sequential(
OrderedDict([
("dense1", ColumnParallelLinear(764, 100)),
("dense2", RowParallelLinear(100, 50)),
(
"layer1",
nn.Sequential(
OrderedDict([
("dense1", ColumnParallelLinear(100, 10)),
("dense2", RowParallelLinear(10, 50)),
])),
),
("act2", nn.ReLU()),
("gate_up_proj", MergedColumnParallelLinear(50, [5, 5])),
("outact", nn.Sigmoid()),
# Special handling for lm_head & sampler
("lm_head", ParallelLMHead(512, 10)),
("logits_processor", LogitsProcessor(512)),
("sampler", Sampler())
]))
model.config = MagicMock()
return model
@pytest.fixture(scope="session")
def sql_lora_huggingface_id():
# huggingface repo id is used to test lora runtime downloading.
return "yard1/llama-2-7b-sql-lora-test"
@pytest.fixture(scope="session")
def sql_lora_files(sql_lora_huggingface_id):
return snapshot_download(repo_id=sql_lora_huggingface_id)
@pytest.fixture(scope="session")
def lora_bias_files():
return snapshot_download(repo_id="followumesh/granite-3b-lora8-bias")
@pytest.fixture(scope="session")
def mixtral_lora_files():
# Note: this module has incorrect adapter_config.json to test
# https://github.com/vllm-project/vllm/pull/5909/files.
return snapshot_download(repo_id="SangBinCho/mixtral-lora")
@pytest.fixture(scope="session")
def mixtral_lora_files_all_target_modules():
return snapshot_download(repo_id="dyang415/mixtral-lora-v0")
@pytest.fixture(scope="session")
def jamba_lora_files():
# some of the adapters have unnecessary weights for serving,
# hence we remove them
def remove_unnecessary_weights(path):
lora_path = f"{adapter_path}/adapter_model.safetensors"
tensors = safetensors.torch.load_file(lora_path)
nonlora_keys = []
for k in list(tensors.keys()):
if "lora" not in k:
nonlora_keys.append(k)
for k in nonlora_keys:
del tensors[k]
safetensors.torch.save_file(tensors, lora_path)
adapter_path = snapshot_download(
repo_id=
"hf-100/Jamba-1.5-mini-Spellbound-StoryWriter-0.1-6583896-ckpt53-lora")
remove_unnecessary_weights(adapter_path)
return adapter_path
@pytest.fixture(scope="session")
def gemma_lora_files():
return snapshot_download(repo_id="wskwon/gemma-7b-test-lora")
@pytest.fixture(scope="session")
def chatglm3_lora_files():
return snapshot_download(repo_id="jeeejeee/chatglm3-text2sql-spider")
@pytest.fixture(scope="session")
def baichuan_lora_files():
return snapshot_download(repo_id="jeeejeee/baichuan7b-text2sql-spider")
@pytest.fixture(scope="session")
def baichuan_zero_lora_files():
# all the lora_B weights are initialized to zero.
return snapshot_download(repo_id="jeeejeee/baichuan7b-zero-init")
@pytest.fixture(scope="session")
def baichuan_regex_lora_files():
return snapshot_download(repo_id="jeeejeee/baichuan-7b-lora-zero-regex")
@pytest.fixture(scope="session")
def minicpmv_lora_files():
return snapshot_download(repo_id="jeeejeee/minicpmv25-lora-pokemon")
@pytest.fixture(scope="session")
def qwen2vl_lora_files():
return snapshot_download(repo_id="jeeejeee/qwen2-vl-lora-pokemon")
@pytest.fixture(scope="session")
def tinyllama_lora_files():
return snapshot_download(repo_id="jashing/tinyllama-colorist-lora")
@pytest.fixture(scope="session")
def phi2_lora_files():
return snapshot_download(repo_id="isotr0py/phi-2-test-sql-lora")
@pytest.fixture(scope="session")
def long_context_lora_files_16k_1():
return snapshot_download(repo_id="SangBinCho/long_context_16k_testing_1")
@pytest.fixture(scope="session")
def long_context_lora_files_16k_2():
return snapshot_download(repo_id="SangBinCho/long_context_16k_testing_2")
@pytest.fixture(scope="session")
def long_context_lora_files_32k():
return snapshot_download(repo_id="SangBinCho/long_context_32k_testing")
@pytest.fixture(scope="session")
def long_context_infos(long_context_lora_files_16k_1,
long_context_lora_files_16k_2,
long_context_lora_files_32k):
cleanup_dist_env_and_memory(shutdown_ray=True)
infos: Dict[int, ContextInfo] = {}
for lora_checkpoint_info in LONG_LORA_INFOS:
lora_id = lora_checkpoint_info["lora_id"]
if lora_id == 1:
lora = long_context_lora_files_16k_1
elif lora_id == 2:
lora = long_context_lora_files_16k_2
elif lora_id == 3:
lora = long_context_lora_files_32k
else:
raise AssertionError("Unknown lora id")
infos[lora_id] = {
"context_length": lora_checkpoint_info["context_length"],
"lora": lora,
}
return infos
@pytest.fixture
def llama_2_7b_engine_extra_embeddings():
cleanup_dist_env_and_memory(shutdown_ray=True)
get_model_old = get_model
def get_model_patched(**kwargs):
kwargs["vllm_config"].lora_config = LoRAConfig(max_loras=4,
max_lora_rank=8)
return get_model_old(**kwargs)
with patch("vllm.worker.model_runner.get_model", get_model_patched):
engine = vllm.LLM("meta-llama/Llama-2-7b-hf", enable_lora=False)
yield engine.llm_engine
del engine
cleanup_dist_env_and_memory(shutdown_ray=True)
@pytest.fixture
def llama_2_7b_model_extra_embeddings(llama_2_7b_engine_extra_embeddings):
yield (llama_2_7b_engine_extra_embeddings.model_executor.driver_worker.
model_runner.model)