
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
125 lines
4.5 KiB
Python
125 lines
4.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Tests for the triton_scaled_mm kernel
|
|
|
|
Run `pytest tests/kernels/test_triton_scaled_mm.py`.
|
|
"""
|
|
import importlib
|
|
from typing import Optional, Type
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm.platforms import current_platform
|
|
|
|
device = "cuda"
|
|
|
|
|
|
def scaled_mm_torch(a: torch.Tensor,
|
|
b: torch.Tensor,
|
|
scale_a: torch.Tensor,
|
|
scale_b: torch.Tensor,
|
|
out_dtype: Type[torch.dtype],
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
out = torch.mm(a.to(torch.float32), b.to(torch.float32))
|
|
out = scale_a * out
|
|
out = scale_b.T * out
|
|
out = out.to(out_dtype)
|
|
if bias is not None:
|
|
out = out + bias
|
|
|
|
return out
|
|
|
|
|
|
def get_8bit_types():
|
|
types = [torch.int8]
|
|
supports_fp8 = current_platform.has_device_capability(89)
|
|
if current_platform.is_rocm() and supports_fp8:
|
|
types.append(torch.float8_e4m3fnuz)
|
|
elif current_platform.is_cuda() and supports_fp8:
|
|
types.append(torch.float8_e4m3fn)
|
|
return types
|
|
|
|
|
|
# This test is to check regressions for int8 support on ROCm.
|
|
@pytest.mark.parametrize("model_path", [
|
|
"neuralmagic/Llama-3.2-1B-quantized.w8a8",
|
|
])
|
|
@pytest.mark.parametrize("max_tokens", [32])
|
|
@pytest.mark.parametrize("num_logprobs", [10])
|
|
@pytest.mark.skipif(not current_platform.is_rocm(),
|
|
reason="Should only run on ROCm")
|
|
def test_rocm_compressed_tensors_w8a8(vllm_runner, example_prompts, model_path,
|
|
max_tokens, num_logprobs):
|
|
dtype = "bfloat16"
|
|
|
|
with vllm_runner(model_path, dtype=dtype) as vllm_model:
|
|
vllm_model.generate_greedy_logprobs(example_prompts, max_tokens,
|
|
num_logprobs)
|
|
|
|
|
|
@pytest.mark.parametrize("M", [1, 33, 64, 512])
|
|
@pytest.mark.parametrize("N", [256, 971, 20486])
|
|
@pytest.mark.parametrize("K", [128, 496, 1024])
|
|
@pytest.mark.parametrize("out_dtype", [torch.float16, torch.bfloat16])
|
|
@pytest.mark.parametrize("in_dtype", get_8bit_types())
|
|
@pytest.mark.parametrize("use_scalar_scale_a", [True, False])
|
|
@pytest.mark.parametrize("use_scalar_scale_b", [True, False])
|
|
@pytest.mark.parametrize("use_bias", [True, False])
|
|
def test_scaled_mm(M, N, K, in_dtype, out_dtype, use_scalar_scale_a,
|
|
use_scalar_scale_b, use_bias):
|
|
is_floating_point_type = lambda t: torch.tensor([1, 1], dtype=t
|
|
).is_floating_point()
|
|
|
|
current_platform.seed_everything(0)
|
|
|
|
# NOTE: There are cases, where if the matrix is large enough, an output
|
|
# like 65504.4 can be produced, and can easily turn into inf when
|
|
# multiplied when using float16/bfloat16. This means one function, e.g.,
|
|
# testing function, and another function, e.g. golden function, can
|
|
# produce a non-inf value while the other produces an inf value, and
|
|
# will cause assert_close/allclose to fail, even though if overflow
|
|
# wouldn't have occurred, the values would have been "close."
|
|
#
|
|
# So, the values here are kept small enough to avoid this situation.
|
|
if is_floating_point_type(in_dtype):
|
|
a = (0.25 * torch.rand(
|
|
(M, K), dtype=torch.float32, device=device)).to(in_dtype)
|
|
b = (0.25 * torch.rand(
|
|
(K, N), dtype=torch.float32, device=device)).to(in_dtype)
|
|
else:
|
|
a = torch.randint(-32, 32, (M, K), dtype=in_dtype, device=device)
|
|
b = torch.randint(-32, 32, (K, N), dtype=in_dtype, device=device)
|
|
|
|
if use_scalar_scale_a:
|
|
scale_a = torch.rand((1, 1), device=device)
|
|
else:
|
|
scale_a = 0.25 * torch.rand((M, 1), device=device)
|
|
|
|
if use_scalar_scale_b:
|
|
scale_b = torch.rand((1, 1), device=device)
|
|
else:
|
|
scale_b = 0.25 * torch.rand((N, 1), device=device)
|
|
|
|
bias = None
|
|
if use_bias:
|
|
bias = torch.rand((N, ), device=device, dtype=out_dtype)
|
|
|
|
triton_scaled_mm_module = importlib.import_module(
|
|
"vllm.model_executor.layers.quantization.compressed_tensors."
|
|
"triton_scaled_mm")
|
|
triton_scaled_mm = triton_scaled_mm_module.triton_scaled_mm
|
|
|
|
c_check = triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
|
|
|
|
a_cpu = a.cpu()
|
|
b_cpu = b.cpu()
|
|
scale_a_cpu = scale_a.cpu()
|
|
scale_b_cpu = scale_b.cpu()
|
|
bias_cpu = None if bias is None else bias.cpu()
|
|
|
|
c_actual = scaled_mm_torch(a_cpu, b_cpu, scale_a_cpu, scale_b_cpu,
|
|
out_dtype, bias_cpu)
|
|
|
|
c_check_cpu = c_check.cpu()
|
|
torch.testing.assert_close(c_check_cpu, c_actual, rtol=1e-1, atol=1e-1)
|