Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

126 lines
5.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Iterable, List, Tuple, Union
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DeltaMessage,
ExtractedToolCallInformation,
FunctionCall, ToolCall)
from vllm.entrypoints.openai.tool_parsers import ToolParser
class StreamingToolReconstructor:
def __init__(self, assert_one_tool_per_delta: bool = True):
self.tool_calls: List[ToolCall] = []
self.other_content: str = ""
self._assert_one_tool_per_delta = assert_one_tool_per_delta
def append_delta(self, delta: DeltaMessage):
if delta.content is not None:
self.other_content += delta.content
else:
assert delta.tool_calls, (
"Streaming results should have either content or tool calls "
"(or both)")
if self._assert_one_tool_per_delta:
# Note: This isn't strictly required by the API and may not be
# possible to adhere to depending on the token space and number of
# tokens per streamed response from the model, but it is required
# by tool_use tests, so we enforce it here by default also.
assert len(delta.tool_calls) < 2, (
"Streaming should include only one tool call per update.")
for call_delta in delta.tool_calls:
assert call_delta.type == "function", (
"Streaming tool calls should only emit function calls. Got "
f"{call_delta.type}")
current_tool_call = self.tool_calls[
call_delta.index] if call_delta.index < len(
self.tool_calls) else None
if current_tool_call:
assert (not call_delta.function.name), (
"Streaming tool calls should emit the full function name "
f"exactly once. Got {call_delta.function.name}")
assert (not call_delta.id), (
"Streaming tool calls must emit function id only once. Got "
f"{call_delta.id}")
assert (call_delta.index == len(self.tool_calls) - 1), (
f"Incorrect index for tool delta. Got {call_delta.index}, "
f"expected {len(self.tool_calls) - 1}")
current_tool_call.function.arguments += (
call_delta.function.arguments)
else:
assert call_delta.id is not None, (
"Streaming tool calls must have an id on first appearance")
assert call_delta.function.name is not None, (
"Streaming tool calls must have a function name on first "
"appearance")
assert call_delta.index == len(self.tool_calls), (
f"Incorrect index for tool delta. Got {call_delta.index}, "
f"expected {len(self.tool_calls)}")
self.tool_calls.append(
ToolCall(id=call_delta.id,
function=FunctionCall(
name=call_delta.function.name,
arguments=call_delta.function.arguments
or "")))
def run_tool_extraction(
tool_parser: ToolParser,
model_output: str,
request: Union[ChatCompletionRequest, None] = None,
streaming: bool = False,
assert_one_tool_per_delta: bool = True,
) -> Tuple[Union[str, None], List[ToolCall]]:
if streaming:
reconstructor = run_tool_extraction_streaming(
tool_parser,
model_output,
request,
assert_one_tool_per_delta=assert_one_tool_per_delta)
return reconstructor.other_content or None, reconstructor.tool_calls
else:
extracted = run_tool_extraction_nonstreaming(tool_parser, model_output,
request)
assert extracted.tools_called == bool(extracted.tool_calls)
return extracted.content, extracted.tool_calls
def run_tool_extraction_nonstreaming(
tool_parser: ToolParser,
model_output: str,
request: Union[ChatCompletionRequest, None] = None
) -> ExtractedToolCallInformation:
request = request or ChatCompletionRequest(messages=[], model="test-model")
return tool_parser.extract_tool_calls(model_output, request)
def run_tool_extraction_streaming(
tool_parser: ToolParser,
model_deltas: Iterable[str],
request: Union[ChatCompletionRequest, None] = None,
assert_one_tool_per_delta: bool = True,
) -> StreamingToolReconstructor:
request = request or ChatCompletionRequest(messages=[], model="test-model")
reconstructor = StreamingToolReconstructor(
assert_one_tool_per_delta=assert_one_tool_per_delta)
previous_text = ""
previous_tokens: List[int] = []
for delta in model_deltas:
token_delta = [
tool_parser.vocab.get(token)
for token in tool_parser.model_tokenizer.tokenize(delta)
if token in tool_parser.vocab
]
current_text = previous_text + delta
current_tokens = previous_tokens + token_delta
delta_message = tool_parser.extract_tool_calls_streaming(
previous_text, current_text, delta, previous_tokens,
current_tokens, token_delta, request)
if delta_message is not None:
reconstructor.append_delta(delta_message)
previous_text = current_text
previous_tokens = current_tokens
return reconstructor