
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
241 lines
7.4 KiB
Python
241 lines
7.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import base64
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import requests
|
|
|
|
from vllm.entrypoints.openai.protocol import PoolingResponse
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
|
|
from ...utils import RemoteOpenAIServer
|
|
|
|
MODEL_NAME = "jason9693/Qwen2.5-1.5B-apeach"
|
|
DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def server():
|
|
args = [
|
|
"--task",
|
|
"classify",
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
"bfloat16",
|
|
"--enforce-eager",
|
|
"--max-model-len",
|
|
"8192",
|
|
"--chat-template",
|
|
DUMMY_CHAT_TEMPLATE,
|
|
]
|
|
|
|
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_single_pooling(server: RemoteOpenAIServer, model_name: str):
|
|
input_texts = [
|
|
"The chef prepared a delicious meal.",
|
|
]
|
|
|
|
# test single pooling
|
|
response = requests.post(
|
|
server.url_for("pooling"),
|
|
json={
|
|
"model": model_name,
|
|
"input": input_texts,
|
|
"encoding_format": "float"
|
|
},
|
|
)
|
|
response.raise_for_status()
|
|
poolings = PoolingResponse.model_validate(response.json())
|
|
|
|
assert poolings.id is not None
|
|
assert len(poolings.data) == 1
|
|
assert len(poolings.data[0].data) == 2
|
|
assert poolings.usage.completion_tokens == 0
|
|
assert poolings.usage.prompt_tokens == 7
|
|
assert poolings.usage.total_tokens == 7
|
|
|
|
# test using token IDs
|
|
input_tokens = [1, 1, 1, 1, 1]
|
|
response = requests.post(
|
|
server.url_for("pooling"),
|
|
json={
|
|
"model": model_name,
|
|
"input": input_tokens,
|
|
"encoding_format": "float"
|
|
},
|
|
)
|
|
response.raise_for_status()
|
|
poolings = PoolingResponse.model_validate(response.json())
|
|
|
|
assert poolings.id is not None
|
|
assert len(poolings.data) == 1
|
|
assert len(poolings.data[0].data) == 2
|
|
assert poolings.usage.completion_tokens == 0
|
|
assert poolings.usage.prompt_tokens == 5
|
|
assert poolings.usage.total_tokens == 5
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_batch_pooling(server: RemoteOpenAIServer, model_name: str):
|
|
# test List[str]
|
|
input_texts = [
|
|
"The cat sat on the mat.", "A feline was resting on a rug.",
|
|
"Stars twinkle brightly in the night sky."
|
|
]
|
|
response = requests.post(
|
|
server.url_for("pooling"),
|
|
json={
|
|
"model": model_name,
|
|
"input": input_texts,
|
|
"encoding_format": "float"
|
|
},
|
|
)
|
|
response.raise_for_status()
|
|
poolings = PoolingResponse.model_validate(response.json())
|
|
|
|
assert poolings.id is not None
|
|
assert len(poolings.data) == 3
|
|
assert len(poolings.data[0].data) == 2
|
|
assert poolings.usage.completion_tokens == 0
|
|
assert poolings.usage.prompt_tokens == 25
|
|
assert poolings.usage.total_tokens == 25
|
|
|
|
# test List[List[int]]
|
|
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
|
|
[25, 32, 64, 77]]
|
|
response = requests.post(
|
|
server.url_for("pooling"),
|
|
json={
|
|
"model": model_name,
|
|
"input": input_tokens,
|
|
"encoding_format": "float"
|
|
},
|
|
)
|
|
response.raise_for_status()
|
|
poolings = PoolingResponse.model_validate(response.json())
|
|
|
|
assert poolings.id is not None
|
|
assert len(poolings.data) == 4
|
|
assert len(poolings.data[0].data) == 2
|
|
assert poolings.usage.completion_tokens == 0
|
|
assert poolings.usage.prompt_tokens == 17
|
|
assert poolings.usage.total_tokens == 17
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_conversation_pooling(server: RemoteOpenAIServer,
|
|
model_name: str):
|
|
messages = [{
|
|
"role": "user",
|
|
"content": "The cat sat on the mat.",
|
|
}, {
|
|
"role": "assistant",
|
|
"content": "A feline was resting on a rug.",
|
|
}, {
|
|
"role": "user",
|
|
"content": "Stars twinkle brightly in the night sky.",
|
|
}]
|
|
|
|
chat_response = requests.post(
|
|
server.url_for("pooling"),
|
|
json={
|
|
"model": model_name,
|
|
"messages": messages,
|
|
"encoding_format": "float",
|
|
},
|
|
)
|
|
chat_response.raise_for_status()
|
|
chat_poolings = PoolingResponse.model_validate(chat_response.json())
|
|
|
|
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
|
|
prompt = tokenizer.apply_chat_template(
|
|
messages,
|
|
chat_template=DUMMY_CHAT_TEMPLATE,
|
|
add_generation_prompt=True,
|
|
continue_final_message=False,
|
|
tokenize=False,
|
|
)
|
|
completions_response = requests.post(
|
|
server.url_for("pooling"),
|
|
json={
|
|
"model": model_name,
|
|
"input": prompt,
|
|
"encoding_format": "float",
|
|
# To be consistent with chat
|
|
"add_special_tokens": False,
|
|
},
|
|
)
|
|
completions_response.raise_for_status()
|
|
completion_poolings = PoolingResponse.model_validate(
|
|
completions_response.json())
|
|
|
|
assert chat_poolings.id is not None
|
|
assert completion_poolings.id is not None
|
|
assert chat_poolings.created <= completion_poolings.created
|
|
assert chat_poolings.model_dump(
|
|
exclude={"id", "created"}) == (completion_poolings.model_dump(
|
|
exclude={"id", "created"}))
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_batch_base64_pooling(server: RemoteOpenAIServer,
|
|
model_name: str):
|
|
input_texts = [
|
|
"Hello my name is",
|
|
"The best thing about vLLM is that it supports many different models"
|
|
]
|
|
|
|
float_response = requests.post(
|
|
server.url_for("pooling"),
|
|
json={
|
|
"input": input_texts,
|
|
"model": model_name,
|
|
"encoding_format": "float",
|
|
},
|
|
)
|
|
float_response.raise_for_status()
|
|
responses_float = PoolingResponse.model_validate(float_response.json())
|
|
|
|
base64_response = requests.post(
|
|
server.url_for("pooling"),
|
|
json={
|
|
"input": input_texts,
|
|
"model": model_name,
|
|
"encoding_format": "base64",
|
|
},
|
|
)
|
|
base64_response.raise_for_status()
|
|
responses_base64 = PoolingResponse.model_validate(base64_response.json())
|
|
|
|
decoded_responses_base64_data = []
|
|
for data in responses_base64.data:
|
|
decoded_responses_base64_data.append(
|
|
np.frombuffer(base64.b64decode(data.data),
|
|
dtype="float32").tolist())
|
|
|
|
assert responses_float.data[0].data == decoded_responses_base64_data[0]
|
|
assert responses_float.data[1].data == decoded_responses_base64_data[1]
|
|
|
|
# Default response is float32 decoded from base64 by OpenAI Client
|
|
default_response = requests.post(
|
|
server.url_for("pooling"),
|
|
json={
|
|
"input": input_texts,
|
|
"model": model_name,
|
|
},
|
|
)
|
|
default_response.raise_for_status()
|
|
responses_default = PoolingResponse.model_validate(default_response.json())
|
|
|
|
assert responses_float.data[0].data == responses_default.data[0].data
|
|
assert responses_float.data[1].data == responses_default.data[1].data
|