vllm/tests/entrypoints/openai/test_embedding.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

277 lines
9.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import base64
import numpy as np
import openai
import pytest
import pytest_asyncio
import requests
from vllm.entrypoints.openai.protocol import EmbeddingResponse
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer
MODEL_NAME = "intfloat/e5-mistral-7b-instruct"
DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501
@pytest.fixture(scope="module")
def server():
args = [
"--task",
"embed",
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--enforce-eager",
"--max-model-len",
"8192",
"--chat-template",
DUMMY_CHAT_TEMPLATE,
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_embedding(client: openai.AsyncOpenAI, model_name: str):
input_texts = [
"The chef prepared a delicious meal.",
]
# test single embedding
embedding_response = await client.embeddings.create(
model=model_name,
input=input_texts,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 9
assert embeddings.usage.total_tokens == 9
# test using token IDs
input_tokens = [1, 1, 1, 1, 1]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_tokens,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 5
assert embeddings.usage.total_tokens == 5
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_embedding(client: openai.AsyncOpenAI, model_name: str):
# test List[str]
input_texts = [
"The cat sat on the mat.", "A feline was resting on a rug.",
"Stars twinkle brightly in the night sky."
]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_texts,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 3
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 32
assert embeddings.usage.total_tokens == 32
# test List[List[int]]
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
[25, 32, 64, 77]]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_tokens,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 4
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 17
assert embeddings.usage.total_tokens == 17
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_conversation_embedding(server: RemoteOpenAIServer,
client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "user",
"content": "The cat sat on the mat.",
}, {
"role": "assistant",
"content": "A feline was resting on a rug.",
}, {
"role": "user",
"content": "Stars twinkle brightly in the night sky.",
}]
chat_response = requests.post(
server.url_for("v1/embeddings"),
json={
"model": model_name,
"messages": messages,
"encoding_format": "float",
},
)
chat_response.raise_for_status()
chat_embeddings = EmbeddingResponse.model_validate(chat_response.json())
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
prompt = tokenizer.apply_chat_template(
messages,
chat_template=DUMMY_CHAT_TEMPLATE,
add_generation_prompt=True,
continue_final_message=False,
tokenize=False,
)
completion_response = await client.embeddings.create(
model=model_name,
input=prompt,
encoding_format="float",
# To be consistent with chat
extra_body={"add_special_tokens": False},
)
completion_embeddings = EmbeddingResponse.model_validate(
completion_response.model_dump(mode="json"))
assert chat_embeddings.id is not None
assert completion_embeddings.id is not None
assert chat_embeddings.created <= completion_embeddings.created
assert chat_embeddings.model_dump(
exclude={"id", "created"}) == (completion_embeddings.model_dump(
exclude={"id", "created"}))
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_base64_embedding(client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"Hello my name is",
"The best thing about vLLM is that it supports many different models"
]
responses_float = await client.embeddings.create(input=input_texts,
model=model_name,
encoding_format="float")
responses_base64 = await client.embeddings.create(input=input_texts,
model=model_name,
encoding_format="base64")
decoded_responses_base64_data = []
for data in responses_base64.data:
decoded_responses_base64_data.append(
np.frombuffer(base64.b64decode(data.embedding),
dtype="float32").tolist())
assert responses_float.data[0].embedding == decoded_responses_base64_data[
0]
assert responses_float.data[1].embedding == decoded_responses_base64_data[
1]
# Default response is float32 decoded from base64 by OpenAI Client
responses_default = await client.embeddings.create(input=input_texts,
model=model_name)
assert responses_float.data[0].embedding == responses_default.data[
0].embedding
assert responses_float.data[1].embedding == responses_default.data[
1].embedding
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_embedding_truncation(client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
]
# test single embedding
embedding_response = await client.embeddings.create(
model=model_name,
input=input_texts,
extra_body={"truncate_prompt_tokens": 10})
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 10
assert embeddings.usage.total_tokens == 10
input_tokens = [
1, 24428, 289, 18341, 26165, 285, 19323, 283, 289, 26789, 3871, 28728,
9901, 340, 2229, 385, 340, 315, 28741, 28804, 2
]
embedding_response = await client.embeddings.create(
model=model_name,
input=input_tokens,
extra_body={"truncate_prompt_tokens": 10})
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 10
assert embeddings.usage.total_tokens == 10
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_embedding_truncation_invalid(client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
]
with pytest.raises(openai.BadRequestError):
response = await client.embeddings.create(
model=model_name,
input=input_texts,
extra_body={"truncate_prompt_tokens": 8193})
assert "error" in response.object
assert "truncate_prompt_tokens value is greater than max_model_len. "\
"Please, select a smaller truncation size." in response.message