
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
277 lines
9.5 KiB
Python
277 lines
9.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import base64
|
|
|
|
import numpy as np
|
|
import openai
|
|
import pytest
|
|
import pytest_asyncio
|
|
import requests
|
|
|
|
from vllm.entrypoints.openai.protocol import EmbeddingResponse
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
|
|
from ...utils import RemoteOpenAIServer
|
|
|
|
MODEL_NAME = "intfloat/e5-mistral-7b-instruct"
|
|
DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def server():
|
|
args = [
|
|
"--task",
|
|
"embed",
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
"bfloat16",
|
|
"--enforce-eager",
|
|
"--max-model-len",
|
|
"8192",
|
|
"--chat-template",
|
|
DUMMY_CHAT_TEMPLATE,
|
|
]
|
|
|
|
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest_asyncio.fixture
|
|
async def client(server):
|
|
async with server.get_async_client() as async_client:
|
|
yield async_client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_single_embedding(client: openai.AsyncOpenAI, model_name: str):
|
|
input_texts = [
|
|
"The chef prepared a delicious meal.",
|
|
]
|
|
|
|
# test single embedding
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_texts,
|
|
encoding_format="float",
|
|
)
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json"))
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 1
|
|
assert len(embeddings.data[0].embedding) == 4096
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 9
|
|
assert embeddings.usage.total_tokens == 9
|
|
|
|
# test using token IDs
|
|
input_tokens = [1, 1, 1, 1, 1]
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_tokens,
|
|
encoding_format="float",
|
|
)
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json"))
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 1
|
|
assert len(embeddings.data[0].embedding) == 4096
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 5
|
|
assert embeddings.usage.total_tokens == 5
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_batch_embedding(client: openai.AsyncOpenAI, model_name: str):
|
|
# test List[str]
|
|
input_texts = [
|
|
"The cat sat on the mat.", "A feline was resting on a rug.",
|
|
"Stars twinkle brightly in the night sky."
|
|
]
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_texts,
|
|
encoding_format="float",
|
|
)
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json"))
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 3
|
|
assert len(embeddings.data[0].embedding) == 4096
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 32
|
|
assert embeddings.usage.total_tokens == 32
|
|
|
|
# test List[List[int]]
|
|
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
|
|
[25, 32, 64, 77]]
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_tokens,
|
|
encoding_format="float",
|
|
)
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json"))
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 4
|
|
assert len(embeddings.data[0].embedding) == 4096
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 17
|
|
assert embeddings.usage.total_tokens == 17
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_conversation_embedding(server: RemoteOpenAIServer,
|
|
client: openai.AsyncOpenAI,
|
|
model_name: str):
|
|
messages = [{
|
|
"role": "user",
|
|
"content": "The cat sat on the mat.",
|
|
}, {
|
|
"role": "assistant",
|
|
"content": "A feline was resting on a rug.",
|
|
}, {
|
|
"role": "user",
|
|
"content": "Stars twinkle brightly in the night sky.",
|
|
}]
|
|
|
|
chat_response = requests.post(
|
|
server.url_for("v1/embeddings"),
|
|
json={
|
|
"model": model_name,
|
|
"messages": messages,
|
|
"encoding_format": "float",
|
|
},
|
|
)
|
|
chat_response.raise_for_status()
|
|
chat_embeddings = EmbeddingResponse.model_validate(chat_response.json())
|
|
|
|
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
|
|
prompt = tokenizer.apply_chat_template(
|
|
messages,
|
|
chat_template=DUMMY_CHAT_TEMPLATE,
|
|
add_generation_prompt=True,
|
|
continue_final_message=False,
|
|
tokenize=False,
|
|
)
|
|
completion_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=prompt,
|
|
encoding_format="float",
|
|
# To be consistent with chat
|
|
extra_body={"add_special_tokens": False},
|
|
)
|
|
completion_embeddings = EmbeddingResponse.model_validate(
|
|
completion_response.model_dump(mode="json"))
|
|
|
|
assert chat_embeddings.id is not None
|
|
assert completion_embeddings.id is not None
|
|
assert chat_embeddings.created <= completion_embeddings.created
|
|
assert chat_embeddings.model_dump(
|
|
exclude={"id", "created"}) == (completion_embeddings.model_dump(
|
|
exclude={"id", "created"}))
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_batch_base64_embedding(client: openai.AsyncOpenAI,
|
|
model_name: str):
|
|
input_texts = [
|
|
"Hello my name is",
|
|
"The best thing about vLLM is that it supports many different models"
|
|
]
|
|
|
|
responses_float = await client.embeddings.create(input=input_texts,
|
|
model=model_name,
|
|
encoding_format="float")
|
|
|
|
responses_base64 = await client.embeddings.create(input=input_texts,
|
|
model=model_name,
|
|
encoding_format="base64")
|
|
|
|
decoded_responses_base64_data = []
|
|
for data in responses_base64.data:
|
|
decoded_responses_base64_data.append(
|
|
np.frombuffer(base64.b64decode(data.embedding),
|
|
dtype="float32").tolist())
|
|
|
|
assert responses_float.data[0].embedding == decoded_responses_base64_data[
|
|
0]
|
|
assert responses_float.data[1].embedding == decoded_responses_base64_data[
|
|
1]
|
|
|
|
# Default response is float32 decoded from base64 by OpenAI Client
|
|
responses_default = await client.embeddings.create(input=input_texts,
|
|
model=model_name)
|
|
|
|
assert responses_float.data[0].embedding == responses_default.data[
|
|
0].embedding
|
|
assert responses_float.data[1].embedding == responses_default.data[
|
|
1].embedding
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_single_embedding_truncation(client: openai.AsyncOpenAI,
|
|
model_name: str):
|
|
input_texts = [
|
|
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
|
|
]
|
|
|
|
# test single embedding
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_texts,
|
|
extra_body={"truncate_prompt_tokens": 10})
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json"))
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 1
|
|
assert len(embeddings.data[0].embedding) == 4096
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 10
|
|
assert embeddings.usage.total_tokens == 10
|
|
|
|
input_tokens = [
|
|
1, 24428, 289, 18341, 26165, 285, 19323, 283, 289, 26789, 3871, 28728,
|
|
9901, 340, 2229, 385, 340, 315, 28741, 28804, 2
|
|
]
|
|
embedding_response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_tokens,
|
|
extra_body={"truncate_prompt_tokens": 10})
|
|
embeddings = EmbeddingResponse.model_validate(
|
|
embedding_response.model_dump(mode="json"))
|
|
|
|
assert embeddings.id is not None
|
|
assert len(embeddings.data) == 1
|
|
assert len(embeddings.data[0].embedding) == 4096
|
|
assert embeddings.usage.completion_tokens == 0
|
|
assert embeddings.usage.prompt_tokens == 10
|
|
assert embeddings.usage.total_tokens == 10
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_single_embedding_truncation_invalid(client: openai.AsyncOpenAI,
|
|
model_name: str):
|
|
input_texts = [
|
|
"Como o Brasil pode fomentar o desenvolvimento de modelos de IA?",
|
|
]
|
|
|
|
with pytest.raises(openai.BadRequestError):
|
|
response = await client.embeddings.create(
|
|
model=model_name,
|
|
input=input_texts,
|
|
extra_body={"truncate_prompt_tokens": 8193})
|
|
assert "error" in response.object
|
|
assert "truncate_prompt_tokens value is greater than max_model_len. "\
|
|
"Please, select a smaller truncation size." in response.message
|