vllm/tests/core/utils.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

259 lines
8.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import time
from collections import defaultdict
from typing import Any, Dict, List, Optional
from typing import Sequence as GenericSequence
from typing import Tuple
from vllm import SamplingParams
from vllm.core.scheduler import Scheduler, SchedulerOutputs
from vllm.inputs import EncoderDecoderInputs, token_inputs
from vllm.lora.request import LoRARequest
from vllm.sequence import (Logprob, Sequence, SequenceGroup,
SequenceGroupMetadata)
def create_dummy_prompt(
request_id: str,
prompt_length: int = -1,
block_size: Optional[int] = None,
lora_request: Optional[LoRARequest] = None,
best_of: int = 1,
prompt_tokens: Optional[List[int]] = None,
min_tokens: int = 0,
max_tokens: int = 16,
) -> Tuple[Sequence, SequenceGroup]:
if not block_size:
block_size = prompt_length
if prompt_tokens is None:
# Create dummy prompt sequence with tokens 0...block_size-1
# and prompt "0 ... block_size".
prompt_tokens = list(range(prompt_length))
prompt_str = " ".join([str(t) for t in prompt_tokens])
prompt = Sequence(int(request_id),
inputs=token_inputs(prompt_tokens, prompt=prompt_str),
block_size=block_size)
seq_group = SequenceGroup(request_id=request_id,
seqs=[prompt],
arrival_time=time.time(),
sampling_params=SamplingParams(
best_of=best_of,
max_tokens=max_tokens,
min_tokens=min_tokens),
lora_request=lora_request)
return prompt, seq_group
def create_dummy_lora_sequence(request_id: int, token_ids: List[int],
block_size: int, lora_int_id: int) -> Sequence:
return Sequence(seq_id=request_id,
inputs=token_inputs(token_ids),
block_size=block_size,
lora_request=LoRARequest(lora_name="dummy",
lora_path="/dummy",
lora_int_id=lora_int_id))
def create_dummy_sequence(request_id: int, token_ids: List[int],
block_size: int) -> Sequence:
return Sequence(
seq_id=request_id,
inputs=token_inputs(token_ids),
block_size=block_size,
)
def create_dummy_prompt_encoder_decoder(
request_id: str,
decoder_prompt_length: int,
encoder_prompt_length: int,
block_size: Optional[int] = None,
lora_request: Optional[LoRARequest] = None,
best_of: int = 1,
) -> Tuple[Sequence, Sequence, SequenceGroup]:
if not block_size:
block_size = decoder_prompt_length
# Create dummy prompt sequence with tokens 0...block_size-1
# and prompt "0 ... block_size". Note that the prompt string
# doesn't actually match the tokens
decoder_prompt_tokens = list(range(decoder_prompt_length))
decoder_prompt_str = " ".join([str(t) for t in decoder_prompt_tokens])
encoder_prompt_tokens = list(reversed(list(range(encoder_prompt_length))))
encoder_prompt_str = " ".join([str(t) for t in encoder_prompt_tokens])
inputs: EncoderDecoderInputs = {
"decoder": token_inputs(decoder_prompt_tokens,
prompt=decoder_prompt_str),
"encoder": token_inputs(encoder_prompt_tokens,
prompt=encoder_prompt_str),
}
decoder_prompt = Sequence(int(request_id),
inputs=inputs["decoder"],
block_size=block_size)
encoder_prompt = Sequence(int(request_id),
inputs=inputs["encoder"],
block_size=block_size)
seq_group = SequenceGroup(request_id=request_id,
seqs=[decoder_prompt],
sampling_params=SamplingParams(best_of=best_of),
arrival_time=time.time(),
lora_request=lora_request,
encoder_seq=encoder_prompt)
return decoder_prompt, encoder_prompt, seq_group
def create_seq_group(
seq_prompt_len: int = 1024,
seq_output_lens: GenericSequence[int] = (128, ),
request_id: str = '0',
seq_id_start: int = 0,
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
assert len(seq_output_lens) > 0
if sampling_params is None:
sampling_params = SamplingParams()
prompt_token_ids = [0] * seq_prompt_len
seqs: List[Sequence] = []
for seq_id_offset, output_len in enumerate(seq_output_lens):
seq = Sequence(
seq_id=seq_id_start + seq_id_offset,
inputs=token_inputs(prompt_token_ids),
block_size=16,
)
for i in range(output_len):
seq.append_token_id(
token_id=i,
logprobs={i: Logprob(0.0)},
)
seqs.append(seq)
seq_group = SequenceGroup(
request_id=request_id,
seqs=seqs,
sampling_params=sampling_params,
arrival_time=time.time(),
)
return seq_group
def create_seq_group_encoder_decoder(
seq_prompt_len: int = 1024,
seq_output_lens: GenericSequence[int] = (128, ),
request_id: str = '0',
seq_id_start: int = 0,
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
assert len(seq_output_lens) > 0
if sampling_params is None:
sampling_params = SamplingParams()
prompt_token_ids = [0] * seq_prompt_len
inputs: EncoderDecoderInputs = {
"decoder": token_inputs(prompt_token_ids),
"encoder": token_inputs(prompt_token_ids),
}
seqs = []
for seq_id_offset, output_len in enumerate(seq_output_lens):
# Construct decoder input sequences
seq = Sequence(
seq_id=seq_id_start + seq_id_offset,
inputs=inputs["decoder"],
block_size=16,
)
for i in range(output_len):
seq.append_token_id(
token_id=i,
logprobs={i: Logprob(0.0)},
)
seqs.append(seq)
# Encoder input sequence
encoder_seq = Sequence(
seq_id=seq_id_start + len(seq_output_lens),
inputs=inputs["encoder"],
block_size=16,
)
return SequenceGroup(request_id=request_id,
seqs=seqs,
sampling_params=sampling_params,
arrival_time=time.time(),
encoder_seq=encoder_seq)
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
return (seq_len + block_size - 1) // block_size
# Helper functions for scheduler tests
def get_sequence_groups(scheduler_output):
return [s.seq_group for s in scheduler_output.scheduled_seq_groups]
def append_new_token(out, token_id: int):
seq_groups = get_sequence_groups(out)
for seq_group in seq_groups:
for seq in seq_group.get_seqs():
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
def schedule_and_update_computed_tokens(scheduler):
metas, out, _ = scheduler.schedule()
for s in out.scheduled_seq_groups:
s.seq_group.update_num_computed_tokens(s.token_chunk_size)
return metas, out
def append_new_token_seq(seq: Sequence, token_id: int):
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
def append_new_token_seq_group(token_chunk_size, seq_group, token_id: int):
seq_group.update_num_computed_tokens(token_chunk_size)
for seq in seq_group.get_seqs():
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
class SchedulerProxy:
"""
A proxy class to forward calls to the scheduler.
"""
def __init__(self, scheduler: Scheduler):
self.scheduler_ = scheduler
self.call_history: Dict[str, List[Any]] = defaultdict(list)
def __getattr__(self, name: str) -> Any:
def wrapper(*args, **kwargs):
result = getattr(self.scheduler_, name)(*args, **kwargs)
self.call_history[name].append((args, kwargs, result))
return result
return wrapper
def last_schedule_ret(
self, ) -> Tuple[List[SequenceGroupMetadata], SchedulerOutputs, Any]:
_, _, ret = self.call_history["schedule"][-1]
return ret