
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
101 lines
3.3 KiB
Python
101 lines
3.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
'''
|
|
Demonstrate prompting of text-to-text
|
|
encoder/decoder models, specifically BART
|
|
'''
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.inputs import (ExplicitEncoderDecoderPrompt, TextPrompt,
|
|
TokensPrompt, zip_enc_dec_prompts)
|
|
|
|
dtype = "float"
|
|
|
|
# Create a BART encoder/decoder model instance
|
|
llm = LLM(
|
|
model="facebook/bart-large-cnn",
|
|
dtype=dtype,
|
|
)
|
|
|
|
# Get BART tokenizer
|
|
tokenizer = llm.llm_engine.get_tokenizer_group()
|
|
|
|
# Test prompts
|
|
#
|
|
# This section shows all of the valid ways to prompt an
|
|
# encoder/decoder model.
|
|
#
|
|
# - Helpers for building prompts
|
|
text_prompt_raw = "Hello, my name is"
|
|
text_prompt = TextPrompt(prompt="The president of the United States is")
|
|
tokens_prompt = TokensPrompt(prompt_token_ids=tokenizer.encode(
|
|
prompt="The capital of France is"))
|
|
# - Pass a single prompt to encoder/decoder model
|
|
# (implicitly encoder input prompt);
|
|
# decoder input prompt is assumed to be None
|
|
|
|
single_text_prompt_raw = text_prompt_raw # Pass a string directly
|
|
single_text_prompt = text_prompt # Pass a TextPrompt
|
|
single_tokens_prompt = tokens_prompt # Pass a TokensPrompt
|
|
|
|
# - Pass explicit encoder and decoder input prompts within one data structure.
|
|
# Encoder and decoder prompts can both independently be text or tokens, with
|
|
# no requirement that they be the same prompt type. Some example prompt-type
|
|
# combinations are shown below, note that these are not exhaustive.
|
|
|
|
enc_dec_prompt1 = ExplicitEncoderDecoderPrompt(
|
|
# Pass encoder prompt string directly, &
|
|
# pass decoder prompt tokens
|
|
encoder_prompt=single_text_prompt_raw,
|
|
decoder_prompt=single_tokens_prompt,
|
|
)
|
|
enc_dec_prompt2 = ExplicitEncoderDecoderPrompt(
|
|
# Pass TextPrompt to encoder, and
|
|
# pass decoder prompt string directly
|
|
encoder_prompt=single_text_prompt,
|
|
decoder_prompt=single_text_prompt_raw,
|
|
)
|
|
enc_dec_prompt3 = ExplicitEncoderDecoderPrompt(
|
|
# Pass encoder prompt tokens directly, and
|
|
# pass TextPrompt to decoder
|
|
encoder_prompt=single_tokens_prompt,
|
|
decoder_prompt=single_text_prompt,
|
|
)
|
|
|
|
# - Finally, here's a useful helper function for zipping encoder and
|
|
# decoder prompts together into a list of ExplicitEncoderDecoderPrompt
|
|
# instances
|
|
zipped_prompt_list = zip_enc_dec_prompts(
|
|
['An encoder prompt', 'Another encoder prompt'],
|
|
['A decoder prompt', 'Another decoder prompt'])
|
|
|
|
# - Let's put all of the above example prompts together into one list
|
|
# which we will pass to the encoder/decoder LLM.
|
|
prompts = [
|
|
single_text_prompt_raw, single_text_prompt, single_tokens_prompt,
|
|
enc_dec_prompt1, enc_dec_prompt2, enc_dec_prompt3
|
|
] + zipped_prompt_list
|
|
|
|
print(prompts)
|
|
|
|
# Create a sampling params object.
|
|
sampling_params = SamplingParams(
|
|
temperature=0,
|
|
top_p=1.0,
|
|
min_tokens=0,
|
|
max_tokens=20,
|
|
)
|
|
|
|
# Generate output tokens from the prompts. The output is a list of
|
|
# RequestOutput objects that contain the prompt, generated
|
|
# text, and other information.
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
|
|
# Print the outputs.
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
encoder_prompt = output.encoder_prompt
|
|
generated_text = output.outputs[0].text
|
|
print(f"Encoder prompt: {encoder_prompt!r}, "
|
|
f"Decoder prompt: {prompt!r}, "
|
|
f"Generated text: {generated_text!r}")
|