
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
163 lines
5.6 KiB
Python
163 lines
5.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""
|
|
This example shows how to use vLLM for running offline inference
|
|
with the correct prompt format on audio language models.
|
|
|
|
For most models, the prompt format should follow corresponding examples
|
|
on HuggingFace model repository.
|
|
"""
|
|
from transformers import AutoTokenizer
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.assets.audio import AudioAsset
|
|
from vllm.utils import FlexibleArgumentParser
|
|
|
|
audio_assets = [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")]
|
|
question_per_audio_count = {
|
|
0: "What is 1+1?",
|
|
1: "What is recited in the audio?",
|
|
2: "What sport and what nursery rhyme are referenced?"
|
|
}
|
|
|
|
# NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on
|
|
# lower-end GPUs.
|
|
# Unless specified, these settings have been tested to work on a single L4.
|
|
|
|
|
|
# Ultravox 0.3
|
|
def run_ultravox(question: str, audio_count: int):
|
|
model_name = "fixie-ai/ultravox-v0_3"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
messages = [{
|
|
'role': 'user',
|
|
'content': "<|audio|>\n" * audio_count + question
|
|
}]
|
|
prompt = tokenizer.apply_chat_template(messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True)
|
|
|
|
llm = LLM(model=model_name,
|
|
max_model_len=4096,
|
|
max_num_seqs=5,
|
|
trust_remote_code=True,
|
|
limit_mm_per_prompt={"audio": audio_count})
|
|
stop_token_ids = None
|
|
return llm, prompt, stop_token_ids
|
|
|
|
|
|
# Qwen2-Audio
|
|
def run_qwen2_audio(question: str, audio_count: int):
|
|
model_name = "Qwen/Qwen2-Audio-7B-Instruct"
|
|
|
|
llm = LLM(model=model_name,
|
|
max_model_len=4096,
|
|
max_num_seqs=5,
|
|
limit_mm_per_prompt={"audio": audio_count})
|
|
|
|
audio_in_prompt = "".join([
|
|
f"Audio {idx+1}: "
|
|
f"<|audio_bos|><|AUDIO|><|audio_eos|>\n" for idx in range(audio_count)
|
|
])
|
|
|
|
prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
|
"<|im_start|>user\n"
|
|
f"{audio_in_prompt}{question}<|im_end|>\n"
|
|
"<|im_start|>assistant\n")
|
|
stop_token_ids = None
|
|
return llm, prompt, stop_token_ids
|
|
|
|
|
|
def run_minicpmo(question: str, audio_count: int):
|
|
model_name = "openbmb/MiniCPM-o-2_6"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
|
trust_remote_code=True)
|
|
llm = LLM(model=model_name,
|
|
trust_remote_code=True,
|
|
max_model_len=4096,
|
|
max_num_seqs=5,
|
|
limit_mm_per_prompt={"audio": audio_count})
|
|
|
|
stop_tokens = ['<|im_end|>', '<|endoftext|>']
|
|
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
|
|
|
|
audio_placeholder = "(<audio>./</audio>)" * audio_count
|
|
audio_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}" # noqa: E501
|
|
messages = [{
|
|
'role': 'user',
|
|
'content': f'{audio_placeholder}\n{question}'
|
|
}]
|
|
prompt = tokenizer.apply_chat_template(messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True,
|
|
chat_template=audio_chat_template)
|
|
return llm, prompt, stop_token_ids
|
|
|
|
|
|
model_example_map = {
|
|
"ultravox": run_ultravox,
|
|
"qwen2_audio": run_qwen2_audio,
|
|
"minicpmo": run_minicpmo
|
|
}
|
|
|
|
|
|
def main(args):
|
|
model = args.model_type
|
|
if model not in model_example_map:
|
|
raise ValueError(f"Model type {model} is not supported.")
|
|
|
|
audio_count = args.num_audios
|
|
llm, prompt, stop_token_ids = model_example_map[model](
|
|
question_per_audio_count[audio_count], audio_count)
|
|
|
|
# We set temperature to 0.2 so that outputs can be different
|
|
# even when all prompts are identical when running batch inference.
|
|
sampling_params = SamplingParams(temperature=0.2,
|
|
max_tokens=64,
|
|
stop_token_ids=stop_token_ids)
|
|
|
|
mm_data = {}
|
|
if audio_count > 0:
|
|
mm_data = {
|
|
"audio": [
|
|
asset.audio_and_sample_rate
|
|
for asset in audio_assets[:audio_count]
|
|
]
|
|
}
|
|
|
|
assert args.num_prompts > 0
|
|
inputs = {"prompt": prompt, "multi_modal_data": mm_data}
|
|
if args.num_prompts > 1:
|
|
# Batch inference
|
|
inputs = [inputs] * args.num_prompts
|
|
|
|
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
|
|
|
for o in outputs:
|
|
generated_text = o.outputs[0].text
|
|
print(generated_text)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = FlexibleArgumentParser(
|
|
description='Demo on using vLLM for offline inference with '
|
|
'audio language models')
|
|
parser.add_argument('--model-type',
|
|
'-m',
|
|
type=str,
|
|
default="ultravox",
|
|
choices=model_example_map.keys(),
|
|
help='Huggingface "model_type".')
|
|
parser.add_argument('--num-prompts',
|
|
type=int,
|
|
default=1,
|
|
help='Number of prompts to run.')
|
|
parser.add_argument("--num-audios",
|
|
type=int,
|
|
default=1,
|
|
choices=[0, 1, 2],
|
|
help="Number of audio items per prompt.")
|
|
|
|
args = parser.parse_args()
|
|
main(args)
|