vllm/examples/offline_inference/audio_language.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

163 lines
5.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""
This example shows how to use vLLM for running offline inference
with the correct prompt format on audio language models.
For most models, the prompt format should follow corresponding examples
on HuggingFace model repository.
"""
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from vllm.assets.audio import AudioAsset
from vllm.utils import FlexibleArgumentParser
audio_assets = [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")]
question_per_audio_count = {
0: "What is 1+1?",
1: "What is recited in the audio?",
2: "What sport and what nursery rhyme are referenced?"
}
# NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on
# lower-end GPUs.
# Unless specified, these settings have been tested to work on a single L4.
# Ultravox 0.3
def run_ultravox(question: str, audio_count: int):
model_name = "fixie-ai/ultravox-v0_3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [{
'role': 'user',
'content': "<|audio|>\n" * audio_count + question
}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
llm = LLM(model=model_name,
max_model_len=4096,
max_num_seqs=5,
trust_remote_code=True,
limit_mm_per_prompt={"audio": audio_count})
stop_token_ids = None
return llm, prompt, stop_token_ids
# Qwen2-Audio
def run_qwen2_audio(question: str, audio_count: int):
model_name = "Qwen/Qwen2-Audio-7B-Instruct"
llm = LLM(model=model_name,
max_model_len=4096,
max_num_seqs=5,
limit_mm_per_prompt={"audio": audio_count})
audio_in_prompt = "".join([
f"Audio {idx+1}: "
f"<|audio_bos|><|AUDIO|><|audio_eos|>\n" for idx in range(audio_count)
])
prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
"<|im_start|>user\n"
f"{audio_in_prompt}{question}<|im_end|>\n"
"<|im_start|>assistant\n")
stop_token_ids = None
return llm, prompt, stop_token_ids
def run_minicpmo(question: str, audio_count: int):
model_name = "openbmb/MiniCPM-o-2_6"
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
llm = LLM(model=model_name,
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=5,
limit_mm_per_prompt={"audio": audio_count})
stop_tokens = ['<|im_end|>', '<|endoftext|>']
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
audio_placeholder = "(<audio>./</audio>)" * audio_count
audio_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}" # noqa: E501
messages = [{
'role': 'user',
'content': f'{audio_placeholder}\n{question}'
}]
prompt = tokenizer.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True,
chat_template=audio_chat_template)
return llm, prompt, stop_token_ids
model_example_map = {
"ultravox": run_ultravox,
"qwen2_audio": run_qwen2_audio,
"minicpmo": run_minicpmo
}
def main(args):
model = args.model_type
if model not in model_example_map:
raise ValueError(f"Model type {model} is not supported.")
audio_count = args.num_audios
llm, prompt, stop_token_ids = model_example_map[model](
question_per_audio_count[audio_count], audio_count)
# We set temperature to 0.2 so that outputs can be different
# even when all prompts are identical when running batch inference.
sampling_params = SamplingParams(temperature=0.2,
max_tokens=64,
stop_token_ids=stop_token_ids)
mm_data = {}
if audio_count > 0:
mm_data = {
"audio": [
asset.audio_and_sample_rate
for asset in audio_assets[:audio_count]
]
}
assert args.num_prompts > 0
inputs = {"prompt": prompt, "multi_modal_data": mm_data}
if args.num_prompts > 1:
# Batch inference
inputs = [inputs] * args.num_prompts
outputs = llm.generate(inputs, sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Demo on using vLLM for offline inference with '
'audio language models')
parser.add_argument('--model-type',
'-m',
type=str,
default="ultravox",
choices=model_example_map.keys(),
help='Huggingface "model_type".')
parser.add_argument('--num-prompts',
type=int,
default=1,
help='Number of prompts to run.')
parser.add_argument("--num-audios",
type=int,
default=1,
choices=[0, 1, 2],
help="Number of audio items per prompt.")
args = parser.parse_args()
main(args)