vllm/benchmarks/kernels/benchmark_moe.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

561 lines
20 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import argparse
import time
from datetime import datetime
from itertools import product
from typing import Any, Dict, List, Tuple, TypedDict
import ray
import torch
import triton
from ray.experimental.tqdm_ray import tqdm
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
FP8_DTYPE = torch.float8_e4m3fnuz if current_platform.is_rocm(
) else torch.float8_e4m3fn
class BenchmarkConfig(TypedDict):
BLOCK_SIZE_M: int
BLOCK_SIZE_N: int
BLOCK_SIZE_K: int
GROUP_SIZE_M: int
num_warps: int
num_stages: int
def benchmark_config(
config: BenchmarkConfig,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
num_iters: int = 100,
) -> float:
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
if use_int8_w8a16:
w1 = torch.randint(-127,
127, (
num_experts,
shard_intermediate_size,
hidden_size,
),
dtype=torch.int8)
w2 = torch.randint(-127,
127, (
num_experts,
hidden_size,
shard_intermediate_size // 2,
),
dtype=torch.int8)
else:
w1 = torch.randn(num_experts,
shard_intermediate_size,
hidden_size,
dtype=init_dtype)
w2 = torch.randn(num_experts,
hidden_size,
shard_intermediate_size // 2,
dtype=init_dtype)
gating_output = torch.randn(num_iters,
num_tokens,
num_experts,
dtype=torch.float32)
w1_scale = None
w2_scale = None
a1_scale = None
a2_scale = None
if use_int8_w8a16:
w1_scale = torch.randn((num_experts, 2 * shard_intermediate_size),
dtype=torch.float32)
w2_scale = torch.randn((hidden_size, num_experts), dtype=torch.float32)
if use_fp8_w8a8:
w1_scale = torch.randn(num_experts, dtype=torch.float32)
w2_scale = torch.randn(num_experts, dtype=torch.float32)
a1_scale = torch.randn(1, dtype=torch.float32)
a2_scale = torch.randn(1, dtype=torch.float32)
w1 = w1.to(FP8_DTYPE)
w2 = w2.to(FP8_DTYPE)
input_gating = torch.empty(num_tokens, num_experts, dtype=torch.float32)
def prepare(i: int):
input_gating.copy_(gating_output[i])
def run():
from vllm.model_executor.layers.fused_moe import override_config
with override_config(config):
fused_moe(
x,
w1,
w2,
input_gating,
topk,
renormalize=True,
inplace=True,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
)
# JIT compilation & warmup
run()
torch.cuda.synchronize()
# Capture 10 invocations with CUDA graph
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
for _ in range(10):
run()
torch.cuda.synchronize()
# Warmup
for _ in range(5):
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: List[float] = []
for i in range(num_iters):
prepare(i)
torch.cuda.synchronize()
start_event.record()
graph.replay()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
graph.reset()
return avg
def get_rocm_tuning_space(use_fp16):
block_mn_range = [16, 32, 64, 128, 256]
block_k_range = [16, 32, 64, 128, 256]
if not use_fp16:
block_k_range.remove(16) # BLOCK_K=16 not supported for fp8
num_warps_range = [1, 2, 4, 8]
group_m_range = [1, 4, 8, 16, 32]
num_stage_range = [2]
waves_per_eu_range = [0]
matrix_instr_nonkdim_range = [16, 32] if use_fp16 else []
kpack_range = [1, 2] if use_fp16 else []
param_ranges = {
"BLOCK_SIZE_M": block_mn_range,
"BLOCK_SIZE_N": block_mn_range,
"BLOCK_SIZE_K": block_k_range,
"GROUP_SIZE_M": group_m_range,
"num_warps": num_warps_range,
"num_stages": num_stage_range,
"waves_per_eu": waves_per_eu_range,
}
if use_fp16:
param_ranges["matrix_instr_nonkdim"] = matrix_instr_nonkdim_range
param_ranges["kpack"] = kpack_range
return param_ranges
def get_configs_compute_bound(use_fp16) -> List[Dict[str, int]]:
configs: List[BenchmarkConfig] = []
if current_platform.is_rocm():
param_ranges = get_rocm_tuning_space(use_fp16)
else:
# Reduced search space for faster tuning.
# TODO(woosuk): Increase the search space and use a performance model to
# prune the search space.
block_m_range = [16, 32, 64, 128, 256]
block_n_range = [32, 64, 128, 256]
block_k_range = [64, 128, 256]
num_warps_range = [4, 8]
group_m_range = [1, 16, 32, 64]
num_stage_range = [2, 3, 4, 5]
param_ranges = {
"BLOCK_SIZE_M": block_m_range,
"BLOCK_SIZE_N": block_n_range,
"BLOCK_SIZE_K": block_k_range,
"GROUP_SIZE_M": group_m_range,
"num_warps": num_warps_range,
"num_stages": num_stage_range,
}
keys, values = zip(*param_ranges.items())
for config_values in product(*values):
config = dict(zip(keys, config_values))
configs.append(config)
return configs
def prune_rocm_search_space(num_tokens, shard_intermediate_size, hidden_size,
search_space, is_fp16):
N1, K1 = shard_intermediate_size, hidden_size
N2, K2 = hidden_size, shard_intermediate_size // 2
pruned_space_1 = prune_rocm_configs(num_tokens * 2, N1, K1, search_space,
is_fp16)
pruned_space_2 = prune_rocm_configs(num_tokens * 2, N2, K2, search_space,
is_fp16)
search_space = merge_unique_dicts(pruned_space_1, pruned_space_2)
return search_space
# The following code is inspired by ROCm/Triton GEMM tuning script:
# https://github.com/ROCm/triton/blob/triton-mlir/scripts/amd/gemm/tune_gemm.py#L89
def prune_rocm_configs(M, N, K, configs, is_fp16=True):
pruned_configs = []
elemBytes_a = 2 if is_fp16 else 1
elemBytes_b = 2 if is_fp16 else 1
mfma = 16 if M < 32 or N < 32 else 32
# TODO (zhanglx): figure out the boundary between large and small gemms
large_gemm = False
if M >= 2048 and N >= 2048:
large_gemm = True
for config in configs:
BLOCK_SIZE_M = config.get("BLOCK_SIZE_M")
BLOCK_SIZE_N = config.get("BLOCK_SIZE_N")
BLOCK_SIZE_K = config.get("BLOCK_SIZE_K")
num_warps = config.get("num_warps")
if is_fp16:
matrix_instr_nonkdim = config.get("matrix_instr_nonkdim")
if matrix_instr_nonkdim > mfma:
continue
if mfma == 4 and BLOCK_SIZE_K < 64:
continue
# some layouts could not work properly in case
# number elements per thread is less 1
if BLOCK_SIZE_M * BLOCK_SIZE_N < 64:
continue
SPLIT_K = config.get("SPLIT_K", 1)
GROUP_M = config.get("GROUP_SIZE_M")
if is_fp16:
if (matrix_instr_nonkdim > BLOCK_SIZE_M
or matrix_instr_nonkdim > BLOCK_SIZE_N):
continue
if (matrix_instr_nonkdim >= M
and matrix_instr_nonkdim != BLOCK_SIZE_M):
continue
if (matrix_instr_nonkdim >= N
and matrix_instr_nonkdim != BLOCK_SIZE_N):
continue
# Skip BLOCK_SIZE that is too large compare to M/N
# unless BLOCK_SIZE is already small enough
if M * 2 < BLOCK_SIZE_M and BLOCK_SIZE_M != 16:
continue
if N * 2 < BLOCK_SIZE_N and BLOCK_SIZE_N != 16:
continue
# skip large split_k when not necessary
if SPLIT_K != 1 and not need_split_k(M, N, K):
continue
# skip split_k that leads to EVEN_K = false
leap = SPLIT_K * BLOCK_SIZE_K
modv = K % leap
if modv != 0:
continue
# skip large GROUP_M
if GROUP_M * BLOCK_SIZE_M > M and GROUP_M != 1:
continue
# out of shared memory resource
# TODO (zhanglx): This does not consider the LDS usage in the epilogue
LDS = (BLOCK_SIZE_K * BLOCK_SIZE_M * elemBytes_a +
BLOCK_SIZE_K * BLOCK_SIZE_N * elemBytes_b)
if LDS > 65536:
continue
# Skip small block sizes and num_warps for large gemm
# For fp16 and f8, we want to only use BLOCK_SIZE >= 64
if large_gemm:
if BLOCK_SIZE_M < 64 or BLOCK_SIZE_N < 64:
continue
if BLOCK_SIZE_K < 64:
continue
if num_warps < 4:
continue
pruned_configs.append(config)
return pruned_configs
def need_split_k(SIZE_M, SIZE_N, SIZE_K):
return (SIZE_M < 64 or SIZE_N < 64) and SIZE_K > 1024
def merge_unique_dicts(list1, list2):
result = []
combined_list = list1.copy()
combined_list.extend(list2)
for dictionary in combined_list:
if dictionary not in result:
result.append(dictionary)
return result
@ray.remote(num_gpus=1)
class BenchmarkWorker:
def __init__(self, seed: int) -> None:
torch.set_default_device("cuda")
current_platform.seed_everything(seed)
self.seed = seed
# Get the device ID to allocate tensors and kernels
# on the respective GPU. This is required for Ray to work
# correctly with multi-GPU tuning on the ROCm platform.
self.device_id = int(ray.get_gpu_ids()[0])
def benchmark(
self,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
) -> Tuple[Dict[str, int], float]:
current_platform.seed_everything(self.seed)
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
op_config = get_moe_configs(num_experts, shard_intermediate_size // 2,
dtype_str)
if op_config is None:
config = get_default_config(num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype_str,
is_marlin=False)
else:
config = op_config[min(op_config.keys(),
key=lambda x: abs(x - num_tokens))]
kernel_time = benchmark_config(config, num_tokens, num_experts,
shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8,
use_int8_w8a16)
return config, kernel_time
def tune(
self,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
search_space: List[Dict[str, int]],
) -> Dict[str, int]:
best_config = None
best_time = float("inf")
if current_platform.is_rocm():
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
search_space = prune_rocm_search_space(num_tokens,
shard_intermediate_size,
hidden_size, search_space,
is_fp16)
with torch.cuda.device(self.device_id):
for config in tqdm(search_space):
try:
kernel_time = benchmark_config(config,
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a16,
num_iters=20)
except triton.runtime.autotuner.OutOfResources:
# Some configurations may be invalid and fail to compile.
continue
if kernel_time < best_time:
best_time = kernel_time
best_config = config
now = datetime.now()
print(f"{now.ctime()}] Completed tuning for batch_size={num_tokens}")
assert best_config is not None
return best_config
def sort_config(config: BenchmarkConfig) -> BenchmarkConfig:
return {
"BLOCK_SIZE_M":
config["BLOCK_SIZE_M"],
"BLOCK_SIZE_N":
config["BLOCK_SIZE_N"],
"BLOCK_SIZE_K":
config["BLOCK_SIZE_K"],
"GROUP_SIZE_M":
config["GROUP_SIZE_M"],
"num_warps":
config["num_warps"],
"num_stages":
config["num_stages"],
**({
"waves_per_eu": config["waves_per_eu"]
} if "waves_per_eu" in config else {}),
**({
"matrix_instr_nonkdim": config["matrix_instr_nonkdim"]
} if "matrix_instr_nonkdim" in config else {}),
**({
"kpack": config["kpack"]
} if "kpack" in config else {}),
}
def save_configs(configs: Dict[int, BenchmarkConfig], num_experts: int,
shard_intermediate_size: int, hidden_size: int, topk: int,
dtype: torch.dtype, use_fp8_w8a8: bool,
use_int8_w8a16: bool) -> None:
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
filename = get_config_file_name(num_experts, shard_intermediate_size // 2,
dtype_str)
print(f"Writing best config to {filename}...")
with open(filename, "w") as f:
json.dump(configs, f, indent=4)
f.write("\n")
def main(args: argparse.Namespace):
print(args)
config = AutoConfig.from_pretrained(
args.model, trust_remote_code=args.trust_remote_code)
if config.architectures[0] == "DbrxForCausalLM":
E = config.ffn_config.moe_num_experts
topk = config.ffn_config.moe_top_k
intermediate_size = config.ffn_config.ffn_hidden_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] == "JambaForCausalLM":
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] == "DeepseekV3ForCausalLM":
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
else:
# Default: Mixtral.
E = config.num_local_experts
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
hidden_size = config.hidden_size
dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
if args.batch_size is None:
batch_sizes = [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]
else:
batch_sizes = [args.batch_size]
ray.init()
num_gpus = int(ray.available_resources()["GPU"])
workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]
def _distribute(method: str, inputs: List[Any]) -> List[Any]:
outputs = []
worker_idx = 0
for input_args in inputs:
worker = workers[worker_idx]
worker_method = getattr(worker, method)
output = worker_method.remote(*input_args)
outputs.append(output)
worker_idx = (worker_idx + 1) % num_gpus
return ray.get(outputs)
if args.tune:
is_fp16 = not (use_fp8_w8a8 or use_int8_w8a16)
search_space = get_configs_compute_bound(is_fp16)
print(f"Start tuning over {len(search_space)} configurations...")
start = time.time()
configs = _distribute(
"tune", [(batch_size, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16, search_space)
for batch_size in batch_sizes])
best_configs = {
M: sort_config(config)
for M, config in zip(batch_sizes, configs)
}
save_configs(best_configs, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16)
end = time.time()
print(f"Tuning took {end - start:.2f} seconds")
else:
outputs = _distribute(
"benchmark", [(batch_size, E, shard_intermediate_size, hidden_size,
topk, dtype, use_fp8_w8a8, use_int8_w8a16)
for batch_size in batch_sizes])
for batch_size, (config, kernel_time) in zip(batch_sizes, outputs):
print(f"Batch size: {batch_size}, config: {config}")
print(f"Kernel time: {kernel_time:.2f} us")
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser.add_argument("--model",
type=str,
default="mistralai/Mixtral-8x7B-Instruct-v0.1")
parser.add_argument("--tp-size",
"-tp",
"--tensor-parallel-size",
type=int,
default=2)
parser.add_argument("--dtype",
type=str,
choices=["auto", "fp8_w8a8", "int8_w8a16"],
default="auto")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--tune", action="store_true")
parser.add_argument("--trust-remote-code", action="store_true")
args = parser.parse_args()
main(args)