
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
250 lines
10 KiB
Python
250 lines
10 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""
|
|
Benchmark the efficiency of prefix caching.
|
|
|
|
This script allows you to benchmark the performance of
|
|
a model with and without prefix caching using either fixed prompts
|
|
or prompts sampled from the ShareGPT dataset.
|
|
|
|
Fixed example usage:
|
|
python benchmark_prefix_caching.py \
|
|
--model meta-llama/Llama-2-7b-chat-hf \
|
|
--enable-prefix-caching \
|
|
--num-prompts 1 \
|
|
--repeat-count 100 \
|
|
--input-length-range 128:256
|
|
|
|
ShareGPT example usage:
|
|
# This command samples 20 prompts with input lengths
|
|
# between 128 and 256 tokens from the ShareGPT dataset,
|
|
# then replicates each prompt 5 times.
|
|
python benchmark_prefix_caching.py \
|
|
--model meta-llama/Llama-2-7b-chat-hf \
|
|
--dataset-path /path/to/ShareGPT_V3_unfiltered_cleaned_split.json \
|
|
--enable-prefix-caching \
|
|
--num-prompts 20 \
|
|
--repeat-count 5 \
|
|
--input-length-range 128:256
|
|
"""
|
|
|
|
import dataclasses
|
|
import json
|
|
import random
|
|
import time
|
|
from typing import List, Optional, Tuple
|
|
|
|
from transformers import PreTrainedTokenizerBase
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
from vllm.utils import FlexibleArgumentParser
|
|
|
|
try:
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
except ImportError:
|
|
from backend_request_func import get_tokenizer
|
|
|
|
PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n" # noqa: E501
|
|
|
|
|
|
def test_prefix(llm=None, sampling_params=None, prompts=None):
|
|
start_time = time.time()
|
|
|
|
llm.generate(prompts, sampling_params=sampling_params)
|
|
|
|
end_time = time.time()
|
|
print(f"cost time {end_time - start_time}")
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class Request:
|
|
prompt: str
|
|
prompt_len: int
|
|
output_len: int
|
|
|
|
|
|
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> str:
|
|
vocab = tokenizer.get_vocab()
|
|
# Remove the special tokens.
|
|
vocab = {
|
|
k: v
|
|
for k, v in vocab.items() if k not in tokenizer.all_special_ids
|
|
}
|
|
return random.choices(list(vocab.values()), k=length)
|
|
|
|
|
|
def sample_requests_from_dataset(
|
|
dataset_path: str,
|
|
num_requests: int,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
input_length_range: Tuple[int, int],
|
|
fixed_output_len: Optional[int],
|
|
) -> List[Request]:
|
|
if fixed_output_len is not None and fixed_output_len < 4:
|
|
raise ValueError("output_len too small")
|
|
|
|
# Load the dataset.
|
|
with open(dataset_path) as f:
|
|
dataset = json.load(f)
|
|
# Filter out the conversations with less than 2 turns.
|
|
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
|
|
# Only keep the first two turns of each conversation.
|
|
dataset = [(data["conversations"][0]["value"],
|
|
data["conversations"][1]["value"]) for data in dataset]
|
|
|
|
# Shuffle the dataset.
|
|
random.shuffle(dataset)
|
|
|
|
min_len, max_len = input_length_range
|
|
assert min_len >= 0 and max_len >= min_len, "input_length_range too small"
|
|
|
|
# Filter out sequences that are too long or too short
|
|
filtered_requests: List[Request] = []
|
|
|
|
for i in range(len(dataset)):
|
|
if len(filtered_requests) == num_requests:
|
|
break
|
|
|
|
# Tokenize the prompts and completions.
|
|
prompt_token_ids = tokenizer(dataset[i][0]).input_ids
|
|
prompt = tokenizer.decode(prompt_token_ids)
|
|
completion = dataset[i][1]
|
|
completion_token_ids = tokenizer(completion).input_ids
|
|
prompt_len = len(prompt_token_ids)
|
|
output_len = (len(completion_token_ids)
|
|
if fixed_output_len is None else fixed_output_len)
|
|
if min_len <= prompt_len <= max_len:
|
|
filtered_requests.append(Request(prompt, prompt_len, output_len))
|
|
|
|
return filtered_requests
|
|
|
|
|
|
def sample_requests_from_random(
|
|
num_requests: int,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
input_length_range: Tuple[int, int],
|
|
fixed_output_len: Optional[int],
|
|
prefix_len: int,
|
|
) -> List[Request]:
|
|
|
|
requests = []
|
|
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
|
|
min_len, max_len = input_length_range
|
|
|
|
for i in range(num_requests):
|
|
unique_part_token_ids = sample_tokens(
|
|
tokenizer,
|
|
random.randint(min_len - prefix_len, max_len - prefix_len))
|
|
prompt_token_ids = prefix_token_ids + unique_part_token_ids
|
|
prompt = tokenizer.decode(prompt_token_ids)
|
|
prompt_len = len(prompt_token_ids)
|
|
assert (min_len <= prompt_len <= max_len
|
|
), f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
|
|
requests.append(Request(prompt, prompt_len, fixed_output_len))
|
|
return requests
|
|
|
|
|
|
def repeat_and_sort_requests(requests: List[Request],
|
|
repeat_count: int,
|
|
sort: bool = False) -> List[str]:
|
|
repeated_requests = requests * repeat_count
|
|
if sort:
|
|
repeated_requests.sort(key=lambda x: x[1])
|
|
else:
|
|
random.shuffle(repeated_requests)
|
|
return [req.prompt for req in repeated_requests]
|
|
|
|
|
|
def main(args):
|
|
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
|
|
input_length_range = tuple(map(int, args.input_length_range.split(':')))
|
|
random.seed(args.seed)
|
|
if args.dataset_path is not None:
|
|
if args.prefix_len > 0:
|
|
raise ValueError("prefix-len is not supported when "
|
|
"dataset-path is provided.")
|
|
print(f"Start to sample {args.num_prompts} prompts "
|
|
f"from {args.dataset_path}")
|
|
filtered_requests = sample_requests_from_dataset(
|
|
dataset_path=args.dataset_path,
|
|
num_requests=args.num_prompts,
|
|
tokenizer=tokenizer,
|
|
input_length_range=input_length_range,
|
|
fixed_output_len=args.output_len,
|
|
)
|
|
else:
|
|
print(f"Start to sample {args.num_prompts} prompts from random")
|
|
filtered_requests = sample_requests_from_random(
|
|
num_requests=args.num_prompts,
|
|
tokenizer=tokenizer,
|
|
input_length_range=input_length_range,
|
|
fixed_output_len=args.output_len,
|
|
prefix_len=args.prefix_len,
|
|
)
|
|
|
|
# Print some helpful stats of the requests.
|
|
print(f"Sampled {len(filtered_requests)} requests.")
|
|
prompt_lens = [req.prompt_len for req in filtered_requests]
|
|
print(f"Average input length: {sum(prompt_lens) / len(prompt_lens)}")
|
|
print(f"P50 input length: {sorted(prompt_lens)[len(prompt_lens) // 2]}")
|
|
print(f"Min Prompt Length: {min(prompt_lens)}")
|
|
print(f"Max Prompt Length: {max(prompt_lens)}")
|
|
|
|
engine_args = EngineArgs.from_cli_args(args)
|
|
|
|
llm = LLM(**dataclasses.asdict(engine_args))
|
|
|
|
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
|
|
|
|
print("Testing filtered requests")
|
|
prompts = repeat_and_sort_requests(filtered_requests,
|
|
repeat_count=args.repeat_count,
|
|
sort=args.sort)
|
|
|
|
print("------start generating------")
|
|
test_prefix(
|
|
llm=llm,
|
|
prompts=prompts,
|
|
sampling_params=sampling_params,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = FlexibleArgumentParser(
|
|
description=
|
|
'Benchmark the performance with or without automatic prefix caching.')
|
|
parser.add_argument("--dataset-path",
|
|
type=str,
|
|
default=None,
|
|
help="Path to the dataset.")
|
|
parser.add_argument('--output-len', type=int, default=10)
|
|
parser.add_argument('--num-prompts',
|
|
type=int,
|
|
required=True,
|
|
help="Number of the prompts sampled from dataset")
|
|
parser.add_argument('--repeat-count',
|
|
type=int,
|
|
default=1,
|
|
help='Number of times to repeat each prompt')
|
|
parser.add_argument('--sort',
|
|
action='store_true',
|
|
help='Sort prompts by input length')
|
|
parser.add_argument('--input-length-range',
|
|
type=str,
|
|
required=True,
|
|
help='Range of input lengths for sampling prompts,'
|
|
'specified as "min:max" (e.g., "128:256").')
|
|
parser.add_argument(
|
|
"--prefix-len",
|
|
type=int,
|
|
default=0,
|
|
help="Specifies the length of a common prefix to be "
|
|
"added to the input prompt. The input-length-range will "
|
|
"subtract this length when filtering prompts. Only used "
|
|
"when dataset-path is not provided.",
|
|
)
|
|
|
|
parser = EngineArgs.add_cli_args(parser)
|
|
args = parser.parse_args()
|
|
main(args)
|