vllm/benchmarks/benchmark_prefix_caching.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

250 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""
Benchmark the efficiency of prefix caching.
This script allows you to benchmark the performance of
a model with and without prefix caching using either fixed prompts
or prompts sampled from the ShareGPT dataset.
Fixed example usage:
python benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-prompts 1 \
--repeat-count 100 \
--input-length-range 128:256
ShareGPT example usage:
# This command samples 20 prompts with input lengths
# between 128 and 256 tokens from the ShareGPT dataset,
# then replicates each prompt 5 times.
python benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-path /path/to/ShareGPT_V3_unfiltered_cleaned_split.json \
--enable-prefix-caching \
--num-prompts 20 \
--repeat-count 5 \
--input-length-range 128:256
"""
import dataclasses
import json
import random
import time
from typing import List, Optional, Tuple
from transformers import PreTrainedTokenizerBase
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser
try:
from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
from backend_request_func import get_tokenizer
PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n" # noqa: E501
def test_prefix(llm=None, sampling_params=None, prompts=None):
start_time = time.time()
llm.generate(prompts, sampling_params=sampling_params)
end_time = time.time()
print(f"cost time {end_time - start_time}")
@dataclasses.dataclass
class Request:
prompt: str
prompt_len: int
output_len: int
def sample_tokens(tokenizer: PreTrainedTokenizerBase, length: int) -> str:
vocab = tokenizer.get_vocab()
# Remove the special tokens.
vocab = {
k: v
for k, v in vocab.items() if k not in tokenizer.all_special_ids
}
return random.choices(list(vocab.values()), k=length)
def sample_requests_from_dataset(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: Tuple[int, int],
fixed_output_len: Optional[int],
) -> List[Request]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# Shuffle the dataset.
random.shuffle(dataset)
min_len, max_len = input_length_range
assert min_len >= 0 and max_len >= min_len, "input_length_range too small"
# Filter out sequences that are too long or too short
filtered_requests: List[Request] = []
for i in range(len(dataset)):
if len(filtered_requests) == num_requests:
break
# Tokenize the prompts and completions.
prompt_token_ids = tokenizer(dataset[i][0]).input_ids
prompt = tokenizer.decode(prompt_token_ids)
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = (len(completion_token_ids)
if fixed_output_len is None else fixed_output_len)
if min_len <= prompt_len <= max_len:
filtered_requests.append(Request(prompt, prompt_len, output_len))
return filtered_requests
def sample_requests_from_random(
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: Tuple[int, int],
fixed_output_len: Optional[int],
prefix_len: int,
) -> List[Request]:
requests = []
prefix_token_ids = sample_tokens(tokenizer, prefix_len)
min_len, max_len = input_length_range
for i in range(num_requests):
unique_part_token_ids = sample_tokens(
tokenizer,
random.randint(min_len - prefix_len, max_len - prefix_len))
prompt_token_ids = prefix_token_ids + unique_part_token_ids
prompt = tokenizer.decode(prompt_token_ids)
prompt_len = len(prompt_token_ids)
assert (min_len <= prompt_len <= max_len
), f"prompt_len {prompt_len} out of range {min_len}:{max_len}"
requests.append(Request(prompt, prompt_len, fixed_output_len))
return requests
def repeat_and_sort_requests(requests: List[Request],
repeat_count: int,
sort: bool = False) -> List[str]:
repeated_requests = requests * repeat_count
if sort:
repeated_requests.sort(key=lambda x: x[1])
else:
random.shuffle(repeated_requests)
return [req.prompt for req in repeated_requests]
def main(args):
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
input_length_range = tuple(map(int, args.input_length_range.split(':')))
random.seed(args.seed)
if args.dataset_path is not None:
if args.prefix_len > 0:
raise ValueError("prefix-len is not supported when "
"dataset-path is provided.")
print(f"Start to sample {args.num_prompts} prompts "
f"from {args.dataset_path}")
filtered_requests = sample_requests_from_dataset(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
input_length_range=input_length_range,
fixed_output_len=args.output_len,
)
else:
print(f"Start to sample {args.num_prompts} prompts from random")
filtered_requests = sample_requests_from_random(
num_requests=args.num_prompts,
tokenizer=tokenizer,
input_length_range=input_length_range,
fixed_output_len=args.output_len,
prefix_len=args.prefix_len,
)
# Print some helpful stats of the requests.
print(f"Sampled {len(filtered_requests)} requests.")
prompt_lens = [req.prompt_len for req in filtered_requests]
print(f"Average input length: {sum(prompt_lens) / len(prompt_lens)}")
print(f"P50 input length: {sorted(prompt_lens)[len(prompt_lens) // 2]}")
print(f"Min Prompt Length: {min(prompt_lens)}")
print(f"Max Prompt Length: {max(prompt_lens)}")
engine_args = EngineArgs.from_cli_args(args)
llm = LLM(**dataclasses.asdict(engine_args))
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)
print("Testing filtered requests")
prompts = repeat_and_sort_requests(filtered_requests,
repeat_count=args.repeat_count,
sort=args.sort)
print("------start generating------")
test_prefix(
llm=llm,
prompts=prompts,
sampling_params=sampling_params,
)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description=
'Benchmark the performance with or without automatic prefix caching.')
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--num-prompts',
type=int,
required=True,
help="Number of the prompts sampled from dataset")
parser.add_argument('--repeat-count',
type=int,
default=1,
help='Number of times to repeat each prompt')
parser.add_argument('--sort',
action='store_true',
help='Sort prompts by input length')
parser.add_argument('--input-length-range',
type=str,
required=True,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
parser.add_argument(
"--prefix-len",
type=int,
default=0,
help="Specifies the length of a common prefix to be "
"added to the input prompt. The input-length-range will "
"subtract this length when filtering prompts. Only used "
"when dataset-path is not provided.",
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
main(args)