vllm/vllm/entrypoints/openai/api_server.py
2025-04-17 19:52:18 +00:00

1131 lines
43 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import asyncio
import atexit
import gc
import importlib
import inspect
import multiprocessing
import os
import re
import signal
import socket
import tempfile
import uuid
from argparse import Namespace
from collections.abc import AsyncIterator
from contextlib import asynccontextmanager
from functools import partial
from http import HTTPStatus
from typing import Annotated, Optional, Union
import uvloop
from fastapi import APIRouter, Depends, FastAPI, Form, HTTPException, Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, Response, StreamingResponse
from starlette.concurrency import iterate_in_threadpool
from starlette.datastructures import State
from starlette.routing import Mount
from typing_extensions import assert_never
import vllm.envs as envs
from vllm.config import VllmConfig
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine # type: ignore
from vllm.engine.multiprocessing.client import MQLLMEngineClient
from vllm.engine.multiprocessing.engine import run_mp_engine
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.chat_utils import (load_chat_template,
resolve_hf_chat_template,
resolve_mistral_chat_template)
from vllm.entrypoints.launcher import serve_http
from vllm.entrypoints.logger import RequestLogger
from vllm.entrypoints.openai.cli_args import (make_arg_parser,
validate_parsed_serve_args)
# yapf conflicts with isort for this block
# yapf: disable
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
CompletionResponse,
DetokenizeRequest,
DetokenizeResponse,
EmbeddingChatRequest,
EmbeddingCompletionRequest,
EmbeddingRequest,
EmbeddingResponse,
EmbeddingResponseData,
ErrorResponse,
LoadLoRAAdapterRequest,
PoolingChatRequest,
PoolingCompletionRequest,
PoolingRequest, PoolingResponse,
RerankRequest, RerankResponse,
ScoreRequest, ScoreResponse,
TokenizeRequest,
TokenizeResponse,
TranscriptionRequest,
TranscriptionResponse,
UnloadLoRAAdapterRequest)
# yapf: enable
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from vllm.entrypoints.openai.serving_engine import OpenAIServing
from vllm.entrypoints.openai.serving_models import (BaseModelPath,
OpenAIServingModels)
from vllm.entrypoints.openai.serving_pooling import OpenAIServingPooling
from vllm.entrypoints.openai.serving_score import ServingScores
from vllm.entrypoints.openai.serving_tokenization import (
OpenAIServingTokenization)
from vllm.entrypoints.openai.serving_transcription import (
OpenAIServingTranscription)
from vllm.entrypoints.openai.tool_parsers import ToolParserManager
from vllm.entrypoints.utils import (cli_env_setup, load_aware_call,
with_cancellation)
from vllm.logger import init_logger
from vllm.reasoning import ReasoningParserManager
from vllm.transformers_utils.config import (
maybe_register_config_serialize_by_value)
from vllm.transformers_utils.tokenizer import MistralTokenizer
from vllm.usage.usage_lib import UsageContext
from vllm.utils import (Device, FlexibleArgumentParser, get_open_zmq_ipc_path,
is_valid_ipv6_address, set_ulimit)
from vllm.version import __version__ as VLLM_VERSION
TIMEOUT_KEEP_ALIVE = 5 # seconds
prometheus_multiproc_dir: tempfile.TemporaryDirectory
# Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765)
logger = init_logger('vllm.entrypoints.openai.api_server')
_running_tasks: set[asyncio.Task] = set()
@asynccontextmanager
async def lifespan(app: FastAPI):
try:
if app.state.log_stats:
engine_client: EngineClient = app.state.engine_client
async def _force_log():
while True:
await asyncio.sleep(10.)
await engine_client.do_log_stats()
task = asyncio.create_task(_force_log())
_running_tasks.add(task)
task.add_done_callback(_running_tasks.remove)
else:
task = None
# Mark the startup heap as static so that it's ignored by GC.
# Reduces pause times of oldest generation collections.
gc.collect()
gc.freeze()
try:
yield
finally:
if task is not None:
task.cancel()
finally:
# Ensure app state including engine ref is gc'd
del app.state
@asynccontextmanager
async def build_async_engine_client(
args: Namespace) -> AsyncIterator[EngineClient]:
# Context manager to handle engine_client lifecycle
# Ensures everything is shutdown and cleaned up on error/exit
engine_args = AsyncEngineArgs.from_cli_args(args)
async with build_async_engine_client_from_engine_args(
engine_args, args.disable_frontend_multiprocessing) as engine:
yield engine
@asynccontextmanager
async def build_async_engine_client_from_engine_args(
engine_args: AsyncEngineArgs,
disable_frontend_multiprocessing: bool = False,
) -> AsyncIterator[EngineClient]:
"""
Create EngineClient, either:
- in-process using the AsyncLLMEngine Directly
- multiprocess using AsyncLLMEngine RPC
Returns the Client or None if the creation failed.
"""
# Create the EngineConfig (determines if we can use V1).
usage_context = UsageContext.OPENAI_API_SERVER
vllm_config = engine_args.create_engine_config(usage_context=usage_context)
# V1 AsyncLLM.
if envs.VLLM_USE_V1:
if disable_frontend_multiprocessing:
logger.warning(
"V1 is enabled, but got --disable-frontend-multiprocessing. "
"To disable frontend multiprocessing, set VLLM_USE_V1=0.")
from vllm.v1.engine.async_llm import AsyncLLM
async_llm: Optional[AsyncLLM] = None
try:
async_llm = AsyncLLM.from_vllm_config(
vllm_config=vllm_config,
usage_context=usage_context,
disable_log_requests=engine_args.disable_log_requests,
disable_log_stats=engine_args.disable_log_stats)
yield async_llm
finally:
if async_llm:
async_llm.shutdown()
# V0 AsyncLLM.
elif (MQLLMEngineClient.is_unsupported_config(vllm_config)
or disable_frontend_multiprocessing):
engine_client: Optional[EngineClient] = None
try:
engine_client = AsyncLLMEngine.from_vllm_config(
vllm_config=vllm_config,
usage_context=usage_context,
disable_log_requests=engine_args.disable_log_requests,
disable_log_stats=engine_args.disable_log_stats)
yield engine_client
finally:
if engine_client and hasattr(engine_client, "shutdown"):
engine_client.shutdown()
# V0MQLLMEngine.
else:
if "PROMETHEUS_MULTIPROC_DIR" not in os.environ:
# Make TemporaryDirectory for prometheus multiprocessing
# Note: global TemporaryDirectory will be automatically
# cleaned up upon exit.
global prometheus_multiproc_dir
prometheus_multiproc_dir = tempfile.TemporaryDirectory()
os.environ[
"PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
else:
logger.warning(
"Found PROMETHEUS_MULTIPROC_DIR was set by user. "
"This directory must be wiped between vLLM runs or "
"you will find inaccurate metrics. Unset the variable "
"and vLLM will properly handle cleanup.")
# Select random path for IPC.
ipc_path = get_open_zmq_ipc_path()
logger.debug("Multiprocessing frontend to use %s for IPC Path.",
ipc_path)
# Start RPCServer in separate process (holds the LLMEngine).
# the current process might have CUDA context,
# so we need to spawn a new process
context = multiprocessing.get_context("spawn")
# Ensure we can serialize transformer config before spawning
maybe_register_config_serialize_by_value()
# The Process can raise an exception during startup, which may
# not actually result in an exitcode being reported. As a result
# we use a shared variable to communicate the information.
engine_alive = multiprocessing.Value('b', True, lock=False)
engine_process = context.Process(
target=run_mp_engine,
args=(vllm_config, UsageContext.OPENAI_API_SERVER, ipc_path,
engine_args.disable_log_stats,
engine_args.disable_log_requests, engine_alive))
engine_process.start()
engine_pid = engine_process.pid
assert engine_pid is not None, "Engine process failed to start."
logger.info("Started engine process with PID %d", engine_pid)
def _cleanup_ipc_path():
socket_path = ipc_path.replace("ipc://", "")
if os.path.exists(socket_path):
os.remove(socket_path)
# Ensure we clean up the local IPC socket file on exit.
atexit.register(_cleanup_ipc_path)
# Build RPCClient, which conforms to EngineClient Protocol.
build_client = partial(MQLLMEngineClient, ipc_path, vllm_config,
engine_pid)
mq_engine_client = await asyncio.get_running_loop().run_in_executor(
None, build_client)
try:
while True:
try:
await mq_engine_client.setup()
break
except TimeoutError:
if (not engine_process.is_alive()
or not engine_alive.value):
raise RuntimeError(
"Engine process failed to start. See stack "
"trace for the root cause.") from None
yield mq_engine_client # type: ignore[misc]
finally:
# Ensure rpc server process was terminated
engine_process.terminate()
# Close all open connections to the backend
mq_engine_client.close()
# Wait for engine process to join
engine_process.join(4)
if engine_process.exitcode is None:
# Kill if taking longer than 5 seconds to stop
engine_process.kill()
# Lazy import for prometheus multiprocessing.
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
# before prometheus_client is imported.
# See https://prometheus.github.io/client_python/multiprocess/
from prometheus_client import multiprocess
multiprocess.mark_process_dead(engine_process.pid)
async def validate_json_request(raw_request: Request):
content_type = raw_request.headers.get("content-type", "").lower()
media_type = content_type.split(";", maxsplit=1)[0]
if media_type != "application/json":
raise HTTPException(
status_code=HTTPStatus.UNSUPPORTED_MEDIA_TYPE,
detail="Unsupported Media Type: Only 'application/json' is allowed"
)
router = APIRouter()
def mount_metrics(app: FastAPI):
# Lazy import for prometheus multiprocessing.
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
# before prometheus_client is imported.
# See https://prometheus.github.io/client_python/multiprocess/
from prometheus_client import (REGISTRY, CollectorRegistry, make_asgi_app,
multiprocess)
from prometheus_fastapi_instrumentator import Instrumentator
registry = REGISTRY
prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None)
if prometheus_multiproc_dir_path is not None:
logger.debug("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR",
prometheus_multiproc_dir_path)
registry = CollectorRegistry()
multiprocess.MultiProcessCollector(registry)
Instrumentator(
excluded_handlers=[
"/metrics",
"/health",
"/load",
"/ping",
"/version",
"/server_info",
],
registry=registry,
).add().instrument(app).expose(app)
# Add prometheus asgi middleware to route /metrics requests
metrics_route = Mount("/metrics", make_asgi_app(registry=registry))
# Workaround for 307 Redirect for /metrics
metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
app.routes.append(metrics_route)
def base(request: Request) -> OpenAIServing:
# Reuse the existing instance
return tokenization(request)
def models(request: Request) -> OpenAIServingModels:
return request.app.state.openai_serving_models
def chat(request: Request) -> Optional[OpenAIServingChat]:
return request.app.state.openai_serving_chat
def completion(request: Request) -> Optional[OpenAIServingCompletion]:
return request.app.state.openai_serving_completion
def pooling(request: Request) -> Optional[OpenAIServingPooling]:
return request.app.state.openai_serving_pooling
def embedding(request: Request) -> Optional[OpenAIServingEmbedding]:
return request.app.state.openai_serving_embedding
def score(request: Request) -> Optional[ServingScores]:
return request.app.state.openai_serving_scores
def rerank(request: Request) -> Optional[ServingScores]:
return request.app.state.openai_serving_scores
def tokenization(request: Request) -> OpenAIServingTokenization:
return request.app.state.openai_serving_tokenization
def transcription(request: Request) -> OpenAIServingTranscription:
return request.app.state.openai_serving_transcription
def engine_client(request: Request) -> EngineClient:
return request.app.state.engine_client
@router.get("/health")
async def health(raw_request: Request) -> Response:
"""Health check."""
await engine_client(raw_request).check_health()
return Response(status_code=200)
@router.get("/load")
async def get_server_load_metrics(request: Request):
# This endpoint returns the current server load metrics.
# It tracks requests utilizing the GPU from the following routes:
# - /v1/chat/completions
# - /v1/completions
# - /v1/audio/transcriptions
# - /v1/embeddings
# - /pooling
# - /score
# - /v1/score
# - /rerank
# - /v1/rerank
# - /v2/rerank
return JSONResponse(
content={'server_load': request.app.state.server_load_metrics})
@router.api_route("/ping", methods=["GET", "POST"])
async def ping(raw_request: Request) -> Response:
"""Ping check. Endpoint required for SageMaker"""
return await health(raw_request)
@router.post("/tokenize", dependencies=[Depends(validate_json_request)])
@with_cancellation
async def tokenize(request: TokenizeRequest, raw_request: Request):
handler = tokenization(raw_request)
generator = await handler.create_tokenize(request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, TokenizeResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
@router.post("/detokenize", dependencies=[Depends(validate_json_request)])
@with_cancellation
async def detokenize(request: DetokenizeRequest, raw_request: Request):
handler = tokenization(raw_request)
generator = await handler.create_detokenize(request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, DetokenizeResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
@router.get("/v1/models")
async def show_available_models(raw_request: Request):
handler = models(raw_request)
models_ = await handler.show_available_models()
return JSONResponse(content=models_.model_dump())
@router.get("/version")
async def show_version():
ver = {"version": VLLM_VERSION}
return JSONResponse(content=ver)
@router.post("/v1/chat/completions",
dependencies=[Depends(validate_json_request)])
@with_cancellation
@load_aware_call
async def create_chat_completion(request: ChatCompletionRequest,
raw_request: Request):
handler = chat(raw_request)
if handler is None:
return base(raw_request).create_error_response(
message="The model does not support Chat Completions API")
generator = await handler.create_chat_completion(request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, ChatCompletionResponse):
return JSONResponse(content=generator.model_dump())
return StreamingResponse(content=generator, media_type="text/event-stream")
@router.post("/v1/completions", dependencies=[Depends(validate_json_request)])
@with_cancellation
@load_aware_call
async def create_completion(request: CompletionRequest, raw_request: Request):
handler = completion(raw_request)
if handler is None:
return base(raw_request).create_error_response(
message="The model does not support Completions API")
generator = await handler.create_completion(request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, CompletionResponse):
return JSONResponse(content=generator.model_dump())
return StreamingResponse(content=generator, media_type="text/event-stream")
@router.post("/v1/embeddings", dependencies=[Depends(validate_json_request)])
@with_cancellation
@load_aware_call
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
handler = embedding(raw_request)
if handler is None:
fallback_handler = pooling(raw_request)
if fallback_handler is None:
return base(raw_request).create_error_response(
message="The model does not support Embeddings API")
logger.warning(
"Embeddings API will become exclusive to embedding models "
"in a future release. To return the hidden states directly, "
"use the Pooling API (`/pooling`) instead.")
res = await fallback_handler.create_pooling(request, raw_request)
generator: Union[ErrorResponse, EmbeddingResponse]
if isinstance(res, PoolingResponse):
generator = EmbeddingResponse(
id=res.id,
object=res.object,
created=res.created,
model=res.model,
data=[
EmbeddingResponseData(
index=d.index,
embedding=d.data, # type: ignore
) for d in res.data
],
usage=res.usage,
)
else:
generator = res
else:
generator = await handler.create_embedding(request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, EmbeddingResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
@router.post("/pooling", dependencies=[Depends(validate_json_request)])
@with_cancellation
@load_aware_call
async def create_pooling(request: PoolingRequest, raw_request: Request):
handler = pooling(raw_request)
if handler is None:
return base(raw_request).create_error_response(
message="The model does not support Pooling API")
generator = await handler.create_pooling(request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, PoolingResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
@router.post("/score", dependencies=[Depends(validate_json_request)])
@with_cancellation
@load_aware_call
async def create_score(request: ScoreRequest, raw_request: Request):
handler = score(raw_request)
if handler is None:
return base(raw_request).create_error_response(
message="The model does not support Score API")
generator = await handler.create_score(request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, ScoreResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
@router.post("/v1/score", dependencies=[Depends(validate_json_request)])
@with_cancellation
@load_aware_call
async def create_score_v1(request: ScoreRequest, raw_request: Request):
logger.warning(
"To indicate that Score API is not part of standard OpenAI API, we "
"have moved it to `/score`. Please update your client accordingly.")
return await create_score(request, raw_request)
@router.post("/v1/audio/transcriptions")
@with_cancellation
@load_aware_call
async def create_transcriptions(request: Annotated[TranscriptionRequest,
Form()],
raw_request: Request):
handler = transcription(raw_request)
if handler is None:
return base(raw_request).create_error_response(
message="The model does not support Transcriptions API")
audio_data = await request.file.read()
generator = await handler.create_transcription(audio_data, request,
raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, TranscriptionResponse):
return JSONResponse(content=generator.model_dump())
return StreamingResponse(content=generator, media_type="text/event-stream")
@router.post("/rerank", dependencies=[Depends(validate_json_request)])
@with_cancellation
@load_aware_call
async def do_rerank(request: RerankRequest, raw_request: Request):
handler = rerank(raw_request)
if handler is None:
return base(raw_request).create_error_response(
message="The model does not support Rerank (Score) API")
generator = await handler.do_rerank(request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, RerankResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
@router.post("/v1/rerank", dependencies=[Depends(validate_json_request)])
@with_cancellation
async def do_rerank_v1(request: RerankRequest, raw_request: Request):
logger.warning_once(
"To indicate that the rerank API is not part of the standard OpenAI"
" API, we have located it at `/rerank`. Please update your client "
"accordingly. (Note: Conforms to JinaAI rerank API)")
return await do_rerank(request, raw_request)
@router.post("/v2/rerank", dependencies=[Depends(validate_json_request)])
@with_cancellation
async def do_rerank_v2(request: RerankRequest, raw_request: Request):
return await do_rerank(request, raw_request)
TASK_HANDLERS: dict[str, dict[str, tuple]] = {
"generate": {
"messages": (ChatCompletionRequest, create_chat_completion),
"default": (CompletionRequest, create_completion),
},
"embed": {
"messages": (EmbeddingChatRequest, create_embedding),
"default": (EmbeddingCompletionRequest, create_embedding),
},
"score": {
"default": (RerankRequest, do_rerank)
},
"rerank": {
"default": (RerankRequest, do_rerank)
},
"reward": {
"messages": (PoolingChatRequest, create_pooling),
"default": (PoolingCompletionRequest, create_pooling),
},
"classify": {
"messages": (PoolingChatRequest, create_pooling),
"default": (PoolingCompletionRequest, create_pooling),
},
}
if envs.VLLM_SERVER_DEV_MODE:
@router.get("/server_info")
async def show_server_info(raw_request: Request):
server_info = {"vllm_config": str(raw_request.app.state.vllm_config)}
return JSONResponse(content=server_info)
@router.post("/reset_prefix_cache")
async def reset_prefix_cache(raw_request: Request):
"""
Reset the prefix cache. Note that we currently do not check if the
prefix cache is successfully reset in the API server.
"""
device = None
device_str = raw_request.query_params.get("device")
if device_str is not None:
device = Device[device_str.upper()]
logger.info("Resetting prefix cache with specific %s...", str(device))
await engine_client(raw_request).reset_prefix_cache(device)
return Response(status_code=200)
@router.post("/sleep")
async def sleep(raw_request: Request):
# get POST params
level = raw_request.query_params.get("level", "1")
await engine_client(raw_request).sleep(int(level))
# FIXME: in v0 with frontend multiprocessing, the sleep command
# is sent but does not finish yet when we return a response.
return Response(status_code=200)
@router.post("/wake_up")
async def wake_up(raw_request: Request):
tags = raw_request.query_params.getlist("tags")
if tags == []:
# set to None to wake up all tags if no tags are provided
tags = None
logger.info("wake up the engine with tags: %s", tags)
await engine_client(raw_request).wake_up(tags)
# FIXME: in v0 with frontend multiprocessing, the wake-up command
# is sent but does not finish yet when we return a response.
return Response(status_code=200)
@router.get("/is_sleeping")
async def is_sleeping(raw_request: Request):
logger.info("check whether the engine is sleeping")
is_sleeping = await engine_client(raw_request).is_sleeping()
return JSONResponse(content={"is_sleeping": is_sleeping})
@router.post("/invocations", dependencies=[Depends(validate_json_request)])
async def invocations(raw_request: Request):
"""
For SageMaker, routes requests to other handlers based on model `task`.
"""
body = await raw_request.json()
task = raw_request.app.state.task
if task not in TASK_HANDLERS:
raise HTTPException(
status_code=400,
detail=f"Unsupported task: '{task}' for '/invocations'. "
f"Expected one of {set(TASK_HANDLERS.keys())}")
handler_config = TASK_HANDLERS[task]
if "messages" in body:
request_model, handler = handler_config["messages"]
else:
request_model, handler = handler_config["default"]
# this is required since we lose the FastAPI automatic casting
request = request_model.model_validate(body)
return await handler(request, raw_request)
if envs.VLLM_TORCH_PROFILER_DIR:
logger.warning(
"Torch Profiler is enabled in the API server. This should ONLY be "
"used for local development!")
@router.post("/start_profile")
async def start_profile(raw_request: Request):
logger.info("Starting profiler...")
await engine_client(raw_request).start_profile()
logger.info("Profiler started.")
return Response(status_code=200)
@router.post("/stop_profile")
async def stop_profile(raw_request: Request):
logger.info("Stopping profiler...")
await engine_client(raw_request).stop_profile()
logger.info("Profiler stopped.")
return Response(status_code=200)
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
logger.warning(
"LoRA dynamic loading & unloading is enabled in the API server. "
"This should ONLY be used for local development!")
@router.post("/v1/load_lora_adapter",
dependencies=[Depends(validate_json_request)])
async def load_lora_adapter(request: LoadLoRAAdapterRequest,
raw_request: Request):
handler = models(raw_request)
response = await handler.load_lora_adapter(request)
if isinstance(response, ErrorResponse):
return JSONResponse(content=response.model_dump(),
status_code=response.code)
return Response(status_code=200, content=response)
@router.post("/v1/unload_lora_adapter",
dependencies=[Depends(validate_json_request)])
async def unload_lora_adapter(request: UnloadLoRAAdapterRequest,
raw_request: Request):
handler = models(raw_request)
response = await handler.unload_lora_adapter(request)
if isinstance(response, ErrorResponse):
return JSONResponse(content=response.model_dump(),
status_code=response.code)
return Response(status_code=200, content=response)
def build_app(args: Namespace) -> FastAPI:
if args.disable_fastapi_docs:
app = FastAPI(openapi_url=None,
docs_url=None,
redoc_url=None,
lifespan=lifespan)
else:
app = FastAPI(lifespan=lifespan)
app.include_router(router)
app.root_path = args.root_path
mount_metrics(app)
app.add_middleware(
CORSMiddleware,
allow_origins=args.allowed_origins,
allow_credentials=args.allow_credentials,
allow_methods=args.allowed_methods,
allow_headers=args.allowed_headers,
)
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(_, exc):
err = ErrorResponse(message=str(exc),
type="BadRequestError",
code=HTTPStatus.BAD_REQUEST)
return JSONResponse(err.model_dump(),
status_code=HTTPStatus.BAD_REQUEST)
# Ensure --api-key option from CLI takes precedence over VLLM_API_KEY
if token := args.api_key or envs.VLLM_API_KEY:
@app.middleware("http")
async def authentication(request: Request, call_next):
if request.method == "OPTIONS":
return await call_next(request)
url_path = request.url.path
if app.root_path and url_path.startswith(app.root_path):
url_path = url_path[len(app.root_path):]
if not url_path.startswith("/v1"):
return await call_next(request)
if request.headers.get("Authorization") != "Bearer " + token:
return JSONResponse(content={"error": "Unauthorized"},
status_code=401)
return await call_next(request)
if args.enable_request_id_headers:
logger.warning(
"CAUTION: Enabling X-Request-Id headers in the API Server. "
"This can harm performance at high QPS.")
@app.middleware("http")
async def add_request_id(request: Request, call_next):
request_id = request.headers.get(
"X-Request-Id") or uuid.uuid4().hex
response = await call_next(request)
response.headers["X-Request-Id"] = request_id
return response
if envs.VLLM_DEBUG_LOG_API_SERVER_RESPONSE:
logger.warning("CAUTION: Enabling log response in the API Server. "
"This can include sensitive information and should be "
"avoided in production.")
@app.middleware("http")
async def log_response(request: Request, call_next):
response = await call_next(request)
response_body = [
section async for section in response.body_iterator
]
response.body_iterator = iterate_in_threadpool(iter(response_body))
logger.info("response_body={%s}",
response_body[0].decode() if response_body else None)
return response
for middleware in args.middleware:
module_path, object_name = middleware.rsplit(".", 1)
imported = getattr(importlib.import_module(module_path), object_name)
if inspect.isclass(imported):
app.add_middleware(imported) # type: ignore[arg-type]
elif inspect.iscoroutinefunction(imported):
app.middleware("http")(imported)
else:
raise ValueError(f"Invalid middleware {middleware}. "
f"Must be a function or a class.")
return app
async def init_app_state(
engine_client: EngineClient,
vllm_config: VllmConfig,
state: State,
args: Namespace,
) -> None:
if args.served_model_name is not None:
served_model_names = args.served_model_name
else:
served_model_names = [args.model]
if args.disable_log_requests:
request_logger = None
else:
request_logger = RequestLogger(max_log_len=args.max_log_len)
base_model_paths = [
BaseModelPath(name=name, model_path=args.model)
for name in served_model_names
]
state.engine_client = engine_client
state.log_stats = not args.disable_log_stats
state.vllm_config = vllm_config
model_config = vllm_config.model_config
resolved_chat_template = load_chat_template(args.chat_template)
if resolved_chat_template is not None:
# Get the tokenizer to check official template
tokenizer = await engine_client.get_tokenizer()
if isinstance(tokenizer, MistralTokenizer):
# The warning is logged in resolve_mistral_chat_template.
resolved_chat_template = resolve_mistral_chat_template(
chat_template=resolved_chat_template)
else:
hf_chat_template = resolve_hf_chat_template(
tokenizer,
chat_template=None,
tools=None,
trust_remote_code=model_config.trust_remote_code)
if hf_chat_template != resolved_chat_template:
logger.warning(
"Using supplied chat template: %s\n"
"It is different from official chat template '%s'. "
"This discrepancy may lead to performance degradation.",
resolved_chat_template, args.model)
state.openai_serving_models = OpenAIServingModels(
engine_client=engine_client,
model_config=model_config,
base_model_paths=base_model_paths,
lora_modules=args.lora_modules,
prompt_adapters=args.prompt_adapters,
)
await state.openai_serving_models.init_static_loras()
state.openai_serving_chat = OpenAIServingChat(
engine_client,
model_config,
state.openai_serving_models,
args.response_role,
request_logger=request_logger,
chat_template=resolved_chat_template,
chat_template_content_format=args.chat_template_content_format,
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
enable_auto_tools=args.enable_auto_tool_choice,
tool_parser=args.tool_call_parser,
enable_reasoning=args.enable_reasoning,
reasoning_parser=args.reasoning_parser,
enable_prompt_tokens_details=args.enable_prompt_tokens_details,
) if model_config.runner_type == "generate" else None
state.openai_serving_completion = OpenAIServingCompletion(
engine_client,
model_config,
state.openai_serving_models,
request_logger=request_logger,
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
) if model_config.runner_type == "generate" else None
state.openai_serving_pooling = OpenAIServingPooling(
engine_client,
model_config,
state.openai_serving_models,
request_logger=request_logger,
chat_template=resolved_chat_template,
chat_template_content_format=args.chat_template_content_format,
) if model_config.runner_type == "pooling" else None
state.openai_serving_embedding = OpenAIServingEmbedding(
engine_client,
model_config,
state.openai_serving_models,
request_logger=request_logger,
chat_template=resolved_chat_template,
chat_template_content_format=args.chat_template_content_format,
) if model_config.task == "embed" else None
state.openai_serving_scores = ServingScores(
engine_client,
model_config,
state.openai_serving_models,
request_logger=request_logger) if model_config.task in (
"score", "embed", "pooling") else None
state.jinaai_serving_reranking = ServingScores(
engine_client,
model_config,
state.openai_serving_models,
request_logger=request_logger
) if model_config.task == "score" else None
state.openai_serving_tokenization = OpenAIServingTokenization(
engine_client,
model_config,
state.openai_serving_models,
request_logger=request_logger,
chat_template=resolved_chat_template,
chat_template_content_format=args.chat_template_content_format,
)
state.openai_serving_transcription = OpenAIServingTranscription(
engine_client,
model_config,
state.openai_serving_models,
request_logger=request_logger,
) if model_config.runner_type == "transcription" else None
state.task = model_config.task
state.enable_server_load_tracking = args.enable_server_load_tracking
state.server_load_metrics = 0
def create_server_socket(addr: tuple[str, int]) -> socket.socket:
family = socket.AF_INET
if is_valid_ipv6_address(addr[0]):
family = socket.AF_INET6
sock = socket.socket(family=family, type=socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
sock.bind(addr)
return sock
async def run_server(args, **uvicorn_kwargs) -> None:
logger.info("vLLM API server version %s", VLLM_VERSION)
logger.info("args: %s", args)
if args.tool_parser_plugin and len(args.tool_parser_plugin) > 3:
ToolParserManager.import_tool_parser(args.tool_parser_plugin)
valid_tool_parses = ToolParserManager.tool_parsers.keys()
if args.enable_auto_tool_choice \
and args.tool_call_parser not in valid_tool_parses:
raise KeyError(f"invalid tool call parser: {args.tool_call_parser} "
f"(chose from {{ {','.join(valid_tool_parses)} }})")
valid_reasoning_parses = ReasoningParserManager.reasoning_parsers.keys()
if args.enable_reasoning \
and args.reasoning_parser not in valid_reasoning_parses:
raise KeyError(
f"invalid reasoning parser: {args.reasoning_parser} "
f"(chose from {{ {','.join(valid_reasoning_parses)} }})")
# workaround to make sure that we bind the port before the engine is set up.
# This avoids race conditions with ray.
# see https://github.com/vllm-project/vllm/issues/8204
sock_addr = (args.host or "", args.port)
sock = create_server_socket(sock_addr)
# workaround to avoid footguns where uvicorn drops requests with too
# many concurrent requests active
set_ulimit()
def signal_handler(*_) -> None:
# Interrupt server on sigterm while initializing
raise KeyboardInterrupt("terminated")
signal.signal(signal.SIGTERM, signal_handler)
async with build_async_engine_client(args) as engine_client:
app = build_app(args)
vllm_config = await engine_client.get_vllm_config()
await init_app_state(engine_client, vllm_config, app.state, args)
def _listen_addr(a: str) -> str:
if is_valid_ipv6_address(a):
return '[' + a + ']'
return a or "0.0.0.0"
is_ssl = args.ssl_keyfile and args.ssl_certfile
logger.info("Starting vLLM API server on http%s://%s:%d",
"s" if is_ssl else "", _listen_addr(sock_addr[0]),
sock_addr[1])
shutdown_task = await serve_http(
app,
sock=sock,
enable_ssl_refresh=args.enable_ssl_refresh,
host=args.host,
port=args.port,
log_level=args.uvicorn_log_level,
# NOTE: When the 'disable_uvicorn_access_log' value is True,
# no access log will be output.
access_log=not args.disable_uvicorn_access_log,
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
ssl_keyfile=args.ssl_keyfile,
ssl_certfile=args.ssl_certfile,
ssl_ca_certs=args.ssl_ca_certs,
ssl_cert_reqs=args.ssl_cert_reqs,
**uvicorn_kwargs,
)
# NB: Await server shutdown only after the backend context is exited
try:
await shutdown_task
finally:
sock.close()
if __name__ == "__main__":
# NOTE(simon):
# This section should be in sync with vllm/entrypoints/cli/main.py for CLI
# entrypoints.
cli_env_setup()
parser = FlexibleArgumentParser(
description="vLLM OpenAI-Compatible RESTful API server.")
parser = make_arg_parser(parser)
args = parser.parse_args()
validate_parsed_serve_args(args)
uvloop.run(run_server(args))