
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
16 KiB
(multimodal-inputs)=
Multimodal Inputs
This page teaches you how to pass multi-modal inputs to multi-modal models in vLLM.
:::{note} We are actively iterating on multi-modal support. See this RFC for upcoming changes, and open an issue on GitHub if you have any feedback or feature requests. :::
Offline Inference
To input multi-modal data, follow this schema in {class}vllm.inputs.PromptType
:
prompt
: The prompt should follow the format that is documented on HuggingFace.multi_modal_data
: This is a dictionary that follows the schema defined in {class}vllm.multimodal.inputs.MultiModalDataDict
.
Image Inputs
You can pass a single image to the 'image'
field of the multi-modal dictionary, as shown in the following examples:
from vllm import LLM
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
# Refer to the HuggingFace repo for the correct format to use
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
# Load the image using PIL.Image
image = PIL.Image.open(...)
# Single prompt inference
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {"image": image},
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
# Batch inference
image_1 = PIL.Image.open(...)
image_2 = PIL.Image.open(...)
outputs = llm.generate(
[
{
"prompt": "USER: <image>\nWhat is the content of this image?\nASSISTANT:",
"multi_modal_data": {"image": image_1},
},
{
"prompt": "USER: <image>\nWhat's the color of this image?\nASSISTANT:",
"multi_modal_data": {"image": image_2},
}
]
)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
Full example: gh-file:examples/offline_inference/vision_language.py
To substitute multiple images inside the same text prompt, you can pass in a list of images instead:
from vllm import LLM
llm = LLM(
model="microsoft/Phi-3.5-vision-instruct",
trust_remote_code=True, # Required to load Phi-3.5-vision
max_model_len=4096, # Otherwise, it may not fit in smaller GPUs
limit_mm_per_prompt={"image": 2}, # The maximum number to accept
)
# Refer to the HuggingFace repo for the correct format to use
prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n"
# Load the images using PIL.Image
image1 = PIL.Image.open(...)
image2 = PIL.Image.open(...)
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {
"image": [image1, image2]
},
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
Full example: gh-file:examples/offline_inference/vision_language_multi_image.py
Multi-image input can be extended to perform video captioning. We show this with Qwen2-VL as it supports videos:
from vllm import LLM
# Specify the maximum number of frames per video to be 4. This can be changed.
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
# Create the request payload.
video_frames = ... # load your video making sure it only has the number of frames specified earlier.
message = {
"role": "user",
"content": [
{"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."},
],
}
for i in range(len(video_frames)):
base64_image = encode_image(video_frames[i]) # base64 encoding.
new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
message["content"].append(new_image)
# Perform inference and log output.
outputs = llm.chat([message])
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
Video Inputs
You can pass a list of NumPy arrays directly to the 'video'
field of the multi-modal dictionary
instead of using multi-image input.
Full example: gh-file:examples/offline_inference/vision_language.py
Audio Inputs
You can pass a tuple (array, sampling_rate)
to the 'audio'
field of the multi-modal dictionary.
Full example: gh-file:examples/offline_inference/audio_language.py
Embedding Inputs
To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model,
pass a tensor of shape (num_items, feature_size, hidden_size of LM)
to the corresponding field of the multi-modal dictionary.
from vllm import LLM
# Inference with image embeddings as input
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
# Refer to the HuggingFace repo for the correct format to use
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
# Embeddings for single image
# torch.Tensor of shape (1, image_feature_size, hidden_size of LM)
image_embeds = torch.load(...)
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": {"image": image_embeds},
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embeddings:
# Construct the prompt based on your model
prompt = ...
# Embeddings for multiple images
# torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM)
image_embeds = torch.load(...)
# Qwen2-VL
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
mm_data = {
"image": {
"image_embeds": image_embeds,
# image_grid_thw is needed to calculate positional encoding.
"image_grid_thw": torch.load(...), # torch.Tensor of shape (1, 3),
}
}
# MiniCPM-V
llm = LLM("openbmb/MiniCPM-V-2_6", trust_remote_code=True, limit_mm_per_prompt={"image": 4})
mm_data = {
"image": {
"image_embeds": image_embeds,
# image_sizes is needed to calculate details of the sliced image.
"image_sizes": [image.size for image in images], # list of image sizes
}
}
outputs = llm.generate({
"prompt": prompt,
"multi_modal_data": mm_data,
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
Online Serving
Our OpenAI-compatible server accepts multi-modal data via the Chat Completions API.
:::{important} A chat template is required to use Chat Completions API.
Although most models come with a chat template, for others you have to define one yourself.
The chat template can be inferred based on the documentation on the model's HuggingFace repo.
For example, LLaVA-1.5 (llava-hf/llava-1.5-7b-hf
) requires a chat template that can be found here: gh-file:examples/template_llava.jinja
:::
Image Inputs
Image input is supported according to OpenAI Vision API. Here is a simple example using Phi-3.5-Vision.
First, launch the OpenAI-compatible server:
vllm serve microsoft/Phi-3.5-vision-instruct --task generate \
--trust-remote-code --max-model-len 4096 --limit-mm-per-prompt image=2
Then, you can use the OpenAI client as follows:
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
# Single-image input inference
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
chat_response = client.chat.completions.create(
model="microsoft/Phi-3.5-vision-instruct",
messages=[{
"role": "user",
"content": [
# NOTE: The prompt formatting with the image token `<image>` is not needed
# since the prompt will be processed automatically by the API server.
{"type": "text", "text": "What’s in this image?"},
{"type": "image_url", "image_url": {"url": image_url}},
],
}],
)
print("Chat completion output:", chat_response.choices[0].message.content)
# Multi-image input inference
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
chat_response = client.chat.completions.create(
model="microsoft/Phi-3.5-vision-instruct",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": "What are the animals in these images?"},
{"type": "image_url", "image_url": {"url": image_url_duck}},
{"type": "image_url", "image_url": {"url": image_url_lion}},
],
}],
)
print("Chat completion output:", chat_response.choices[0].message.content)
Full example: gh-file:examples/online_serving/openai_chat_completion_client_for_multimodal.py
:::{tip}
Loading from local file paths is also supported on vLLM: You can specify the allowed local media path via --allowed-local-media-path
when launching the API server/engine,
and pass the file path as url
in the API request.
:::
:::{tip} There is no need to place image placeholders in the text content of the API request - they are already represented by the image content. In fact, you can place image placeholders in the middle of the text by interleaving text and image content. :::
:::{note}
By default, the timeout for fetching images through HTTP URL is 5
seconds.
You can override this by setting the environment variable:
export VLLM_IMAGE_FETCH_TIMEOUT=<timeout>
:::
Video Inputs
Instead of image_url
, you can pass a video file via video_url
. Here is a simple example using LLaVA-OneVision.
First, launch the OpenAI-compatible server:
vllm serve llava-hf/llava-onevision-qwen2-0.5b-ov-hf --task generate --max-model-len 8192
Then, you can use the OpenAI client as follows:
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4"
## Use video url in the payload
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this video?"
},
{
"type": "video_url",
"video_url": {
"url": video_url
},
},
],
}],
model=model,
max_completion_tokens=64,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from image url:", result)
Full example: gh-file:examples/online_serving/openai_chat_completion_client_for_multimodal.py
:::{note}
By default, the timeout for fetching videos through HTTP URL is 30
seconds.
You can override this by setting the environment variable:
export VLLM_VIDEO_FETCH_TIMEOUT=<timeout>
:::
Audio Inputs
Audio input is supported according to OpenAI Audio API. Here is a simple example using Ultravox-v0.5-1B.
First, launch the OpenAI-compatible server:
vllm serve fixie-ai/ultravox-v0_5-llama-3_2-1b
Then, you can use the OpenAI client as follows:
import base64
import requests
from openai import OpenAI
from vllm.assets.audio import AudioAsset
def encode_base64_content_from_url(content_url: str) -> str:
"""Encode a content retrieved from a remote url to base64 format."""
with requests.get(content_url) as response:
response.raise_for_status()
result = base64.b64encode(response.content).decode('utf-8')
return result
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
# Any format supported by librosa is supported
audio_url = AudioAsset("winning_call").url
audio_base64 = encode_base64_content_from_url(audio_url)
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role": "user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "input_audio",
"input_audio": {
"data": audio_base64,
"format": "wav"
},
},
],
}],
model=model,
max_completion_tokens=64,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from input audio:", result)
Alternatively, you can pass audio_url
, which is the audio counterpart of image_url
for image input:
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role": "user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "audio_url",
"audio_url": {
"url": audio_url
},
},
],
}],
model=model,
max_completion_tokens=64,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from audio url:", result)
Full example: gh-file:examples/online_serving/openai_chat_completion_client_for_multimodal.py
:::{note}
By default, the timeout for fetching audios through HTTP URL is 10
seconds.
You can override this by setting the environment variable:
export VLLM_AUDIO_FETCH_TIMEOUT=<timeout>
:::
Embedding Inputs
To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model, pass a tensor of shape to the corresponding field of the multi-modal dictionary.
Image Embedding Inputs
For image embeddings, you can pass the base64-encoded tensor to the image_embeds
field.
The following example demonstrates how to pass image embeddings to the OpenAI server:
image_embedding = torch.load(...)
grid_thw = torch.load(...) # Required by Qwen/Qwen2-VL-2B-Instruct
buffer = io.BytesIO()
torch.save(image_embedding, buffer)
buffer.seek(0)
binary_data = buffer.read()
base64_image_embedding = base64.b64encode(binary_data).decode('utf-8')
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
# Basic usage - this is equivalent to the LLaVA example for offline inference
model = "llava-hf/llava-1.5-7b-hf"
embeds = {
"type": "image_embeds",
"image_embeds": f"{base64_image_embedding}"
}
# Pass additional parameters (available to Qwen2-VL and MiniCPM-V)
model = "Qwen/Qwen2-VL-2B-Instruct"
embeds = {
"type": "image_embeds",
"image_embeds": {
"image_embeds": f"{base64_image_embedding}" , # Required
"image_grid_thw": f"{base64_image_grid_thw}" # Required by Qwen/Qwen2-VL-2B-Instruct
},
}
model = "openbmb/MiniCPM-V-2_6"
embeds = {
"type": "image_embeds",
"image_embeds": {
"image_embeds": f"{base64_image_embedding}" , # Required
"image_sizes": f"{base64_image_sizes}" # Required by openbmb/MiniCPM-V-2_6
},
}
chat_completion = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{
"type": "text",
"text": "What's in this image?",
},
embeds,
],
},
],
model=model,
)
:::{note}
Only one message can contain {"type": "image_embeds"}
.
If used with a model that requires additional parameters, you must also provide a tensor for each of them, e.g. image_grid_thw
, image_sizes
, etc.
:::