vllm/tests/kernels/test_block_int8.py
2025-04-11 17:54:08 +00:00

200 lines
7.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from https://github.com/sgl-project/sglang/blob/main/test/srt/test_block_int8.py
import itertools
import pytest
import torch
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.model_executor.layers.quantization.utils.int8_utils import (
w8a8_block_int8_matmul)
from vllm.platforms import current_platform
from .utils_block import native_w8a8_block_matmul
if current_platform.get_device_capability() < (7, 0):
pytest.skip("INT8 Triton requires CUDA 7.0 or higher",
allow_module_level=True)
# For test
def native_per_token_group_quant_int8(x,
group_size,
eps=1e-10,
dtype=torch.int8):
"""Function to perform per-token-group quantization on an input tensor
`x` using native torch.
It converts the tensor values into int8 values and returns the
quantized tensor along with the scaling factor used for quantization.
"""
assert (x.shape[-1] % group_size == 0
), "the last dimension of `x` cannot be divisible by `group_size`"
assert x.is_contiguous(), "`x` is not contiguous"
iinfo = torch.iinfo(dtype)
int8_min = iinfo.min
int8_max = iinfo.max
x_ = x.reshape(x.numel() // group_size, group_size)
# Use float32 for scale calculation for stability
amax = x_.abs().max(dim=-1,
keepdim=True)[0].clamp(min=eps).to(torch.float32)
x_s = amax / int8_max
x_q = (x_.to(torch.float32) / x_s).round().clamp(
min=int8_min, max=int8_max).to(dtype) # Round before clamping
x_q = x_q.reshape(x.shape)
x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size, ))
return x_q, x_s
# For test
def torch_w8a8_block_int8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape):
"""This function performs fused moe with block-wise quantization using
native torch."""
B, D = a.shape
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
score = torch.softmax(score, dim=-1, dtype=torch.float32)
topk_weight, topk_ids = torch.topk(score, topk)
topk_weight = topk_weight.view(-1)
topk_ids = topk_ids.view(-1)
_, block_k = block_shape[0], block_shape[1]
a_q, a_s = native_per_token_group_quant_int8(a, block_k)
for i in range(w1.shape[0]):
mask = topk_ids == i
if mask.sum():
inter_out = native_w8a8_block_matmul(a_q[mask],
w1[i],
a_s[mask],
w1_s[i],
block_shape,
output_dtype=a.dtype)
act_out = SiluAndMul().forward_native(inter_out)
act_out_q, act_out_s = native_per_token_group_quant_int8(
act_out, block_k)
act_out = act_out.to(torch.float32)
out[mask] = native_w8a8_block_matmul(act_out_q,
w2[i],
act_out_s,
w2_s[i],
block_shape,
output_dtype=a.dtype)
return (out.view(B, -1, w2.shape[1]) *
topk_weight.view(B, -1, 1).to(out.dtype)).sum(dim=1)
DTYPES = [torch.half, torch.bfloat16]
M = [1, 33, 64, 222]
N = [128, 1024]
K = [256, 4096]
E = [8, 24]
TOP_KS = [2, 6]
# BLOCK_SIZE = [[64, 64], [64, 128], [128, 64], [128, 128]]
BLOCK_SIZE = [[128, 128]]
SEEDS = [0]
@pytest.fixture(autouse=True, scope="module")
def setup_cuda():
"""Sets the default CUDA device for all tests in this module."""
torch.set_default_device("cuda")
@pytest.mark.parametrize("M,N,K,block_size,out_dtype,seed",
itertools.product(M, N, K, BLOCK_SIZE, DTYPES, SEEDS))
@torch.inference_mode()
def test_w8a8_block_int8_matmul(M, N, K, block_size, out_dtype, seed):
torch.manual_seed(seed)
factor_for_scale = 1e-2
int8_info = torch.iinfo(torch.int8)
int8_max, int8_min = int8_info.max, int8_info.min
A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * int8_max
A_fp8 = A_fp32.clamp(min=int8_min, max=int8_max).to(torch.float8_e4m3fn)
B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * int8_max
B_fp8 = B_fp32.clamp(min=int8_min, max=int8_max).to(torch.float8_e4m3fn)
block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale
Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale
ref_out = native_w8a8_block_matmul(A_fp8, B_fp8, As, Bs, block_size,
out_dtype)
out = w8a8_block_int8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
rel_diff = (torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
torch.mean(torch.abs(ref_out.to(torch.float32))))
assert rel_diff < 0.001
@pytest.mark.parametrize(
"M, N, K, E, topk, block_size, dtype, seed",
itertools.product(M, N, K, E, TOP_KS, BLOCK_SIZE, DTYPES, SEEDS))
@torch.inference_mode()
def test_w8a8_block_int8_fused_moe(M, N, K, E, topk, block_size, dtype, seed):
"""Tests the fused_moe kernel with W8A8 INT8 block quantization against a
native torch reference."""
torch.manual_seed(seed)
# Use a smaller factor for scale initialization to prevent large
# values/overflow especially when output dtype might be float16
factor_for_scale = 1e-2
int8_info = torch.iinfo(torch.int8)
int8_max, int8_min = int8_info.max, int8_info.min
a = torch.randn((M, K), dtype=dtype) / 10
w1_fp32 = (torch.rand(
(E, 2 * N, K), dtype=torch.float32) - 0.5) * 2 * int8_max
w1 = w1_fp32.clamp(min=int8_min, max=int8_max).to(torch.int8)
w2_fp32 = (torch.rand((E, K, N), dtype=torch.float32) - 0.5) * 2 * int8_max
w2 = w2_fp32.clamp(min=int8_min, max=int8_max).to(torch.int8)
block_n, block_k = block_size[0], block_size[1]
n_tiles_w1 = (2 * N + block_n - 1) // block_n
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k
w1_s = (torch.rand(
(E, n_tiles_w1, k_tiles_w1), dtype=torch.float32) * factor_for_scale)
w2_s = (torch.rand(
(E, n_tiles_w2, k_tiles_w2), dtype=torch.float32) * factor_for_scale)
score = torch.randn((M, E), dtype=dtype)
# Set the context to avoid lots of warning spam.
vllm_config = VllmConfig()
with set_current_vllm_config(vllm_config):
out = fused_moe(
a,
w1,
w2,
score,
topk,
renormalize=False,
use_int8_w8a8=True,
w1_scale=w1_s,
w2_scale=w2_s,
block_shape=block_size,
)
ref_out = torch_w8a8_block_int8_moe(a, w1, w2, w1_s, w2_s, score, topk,
block_size)
# Check results
rel_diff = (torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
torch.mean(torch.abs(ref_out.to(torch.float32))))
assert rel_diff < 0.06