vllm/vllm/model_executor/pooling_metadata.py

70 lines
2.0 KiB
Python

from dataclasses import dataclass
from typing import Any, Dict, List, Tuple
import torch
from vllm.pooling_params import PoolingParams
from vllm.utils import is_pin_memory_available
class PoolingMetadata:
"""Metadata for pooling operations in the Pooler layer.
This class holds the necessary information for pooling operations,
providing context for how to perform pooling and other related operations.
Attributes:
seq_groups: List of (seq_ids, pooling_params).
seq_data: A mapping of sequence ID to additional sequence data.
prompt_lens: List of the lengths of each prompt.
"""
def __init__(
self,
seq_groups: List[Tuple[List[int], PoolingParams]],
seq_data: Dict[int, Any], # Specific data related to sequences
prompt_lens: List[int],
) -> None:
self.seq_groups = seq_groups
self.seq_data = seq_data
self.prompt_lens = prompt_lens
def __repr__(self) -> str:
return ("PoolingMetadata("
f"seq_groups={self.seq_groups}, "
f"seq_data={self.seq_data}, "
f"prompt_lens={self.prompt_lens})")
@dataclass
class PoolingTensors:
"""Tensors for pooling."""
prompt_lens: torch.Tensor
@classmethod
def from_pooling_metadata(
cls,
pooling_metadata: "PoolingMetadata",
device: torch.device,
) -> "PoolingTensors":
"""
Create PoolingTensors from PoolingMetadata.
Args:
pooling_metadata: PoolingMetadata instance to convert.
device: Device to store the tensors.
"""
# Convert prompt lengths to tensor
pin_memory = is_pin_memory_available()
prompt_lens_t = torch.tensor(
pooling_metadata.prompt_lens,
device="cpu",
dtype=torch.long,
pin_memory=pin_memory,
)
return cls(prompt_lens=prompt_lens_t.to(device=device,
non_blocking=True), )