2024-03-27 13:01:46 -07:00

58 lines
2.1 KiB
Python

from typing import Optional
from transformers import AutoConfig, PretrainedConfig
from vllm.transformers_utils.configs import *
_CONFIG_REGISTRY = {
"chatglm": ChatGLMConfig,
"dbrx": DbrxConfig,
"mpt": MPTConfig,
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
"jais": JAISConfig,
}
def get_config(model: str,
trust_remote_code: bool,
revision: Optional[str] = None,
code_revision: Optional[str] = None) -> PretrainedConfig:
try:
config = AutoConfig.from_pretrained(
model,
trust_remote_code=trust_remote_code,
revision=revision,
code_revision=code_revision)
except ValueError as e:
if (not trust_remote_code and
"requires you to execute the configuration file" in str(e)):
err_msg = (
"Failed to load the model config. If the model is a custom "
"model not yet available in the HuggingFace transformers "
"library, consider setting `trust_remote_code=True` in LLM "
"or using the `--trust-remote-code` flag in the CLI.")
raise RuntimeError(err_msg) from e
else:
raise e
if config.model_type in _CONFIG_REGISTRY:
config_class = _CONFIG_REGISTRY[config.model_type]
config = config_class.from_pretrained(model,
revision=revision,
code_revision=code_revision)
return config
def get_hf_text_config(config: PretrainedConfig):
"""Get the "sub" config relevant to llm for multi modal models.
No op for pure text models.
"""
if hasattr(config, "text_config"):
# The code operates under the assumption that text_config should have
# `num_attention_heads` (among others). Assert here to fail early
# if transformers config doesn't align with this assumption.
assert hasattr(config.text_config, "num_attention_heads")
return config.text_config
else:
return config