vllm/examples/offline_inference_arctic.py
Hao Zhang ebce310b74
[Model] Snowflake arctic model implementation (#4652)
Co-authored-by: Dash Desai <1723932+iamontheinet@users.noreply.github.com>
Co-authored-by: Aurick Qiao <qiao@aurick.net>
Co-authored-by: Aurick Qiao <aurick.qiao@snowflake.com>
Co-authored-by: Aurick Qiao <aurickq@users.noreply.github.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-05-09 22:37:14 +00:00

27 lines
856 B
Python

from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="snowflake/snowflake-arctic-instruct",
quantization="deepspeedfp",
tensor_parallel_size=8,
trust_remote_code=True)
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")