vllm/tests/basic_correctness/test_chunked_prefill.py
2024-08-12 22:47:41 +00:00

153 lines
5.0 KiB
Python

"""Compare the outputs of HF and vLLM when using greedy sampling.
It tests chunked prefill. Chunked prefill can be enabled by
enable_chunked_prefill=True. If prefill size exceeds max_num_batched_tokens,
prefill requests are chunked.
Run `pytest tests/models/test_chunked_prefill.py`.
"""
import pytest
from ..models.utils import check_logprobs_close, check_outputs_equal
MODELS = [
"facebook/opt-125m",
"meta-llama/Llama-2-7b-hf",
]
E5M2_KV_MODELS = [
"facebook/opt-125m",
"meta-llama/Llama-2-7b-chat-hf",
]
E4M3_KV_MODELS = [
"meta-llama/Llama-2-7b-chat-hf", "nm-testing/Qwen2-1.5B-Instruct-FP8-K-V",
"nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme"
]
KV_CACHE_QUANTIZATION_PATHS = {
"meta-llama/Llama-2-7b-chat-hf":
"./tests/fp8_kv/llama2-7b-fp8-kv/kv_cache_scales.json"
}
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
@pytest.mark.parametrize("enforce_eager", [False, True])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
chunked_prefill_token_size: int,
enforce_eager: bool,
tensor_parallel_size: int,
) -> None:
"""
Checks exact match decode between huggingface model and vllm runner with
chunked prefill.
"""
max_num_seqs = chunked_prefill_token_size
max_num_batched_tokens = chunked_prefill_token_size
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
with vllm_runner(
model,
dtype=dtype,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=True,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
check_outputs_equal(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("kv_cache_dtype,model",
[("fp8_e5m2", m)
for m in E5M2_KV_MODELS] + [("fp8_e4m3", m)
for m in E4M3_KV_MODELS])
# Due to low-precision numerical divergence, we only test logprob of 4 tokens
@pytest.mark.parametrize("max_tokens", [4])
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
@pytest.mark.parametrize("enforce_eager", [False, True])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
def test_models_with_fp8_kv_cache(
vllm_runner,
example_prompts,
kv_cache_dtype: str,
model: str,
max_tokens: int,
chunked_prefill_token_size: int,
enforce_eager: bool,
tensor_parallel_size: int,
) -> None:
"""
Only checks log probs match between chunked-prefill and
non-chunked-prefill version of vLLM model runner.
This test is used when there is discrepancy in kernels
/ numerics (e.g. when using lower-precision types like FP8).
"""
NUM_LOG_PROBS = 8
if model == "facebook/opt-125m":
pytest.skip(
"#7378: CUDA illegal memory access (undiagnosed) facebook/opt-125m"
)
max_num_seqs = chunked_prefill_token_size
max_num_batched_tokens = chunked_prefill_token_size
extra_kwargs = {}
if model in KV_CACHE_QUANTIZATION_PATHS:
extra_kwargs["quantization_param_path"] = KV_CACHE_QUANTIZATION_PATHS[
model]
with vllm_runner(
model,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
kv_cache_dtype=kv_cache_dtype,
**extra_kwargs,
) as vllm_model:
no_chunked_prefill_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
with vllm_runner(
model,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=True,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
kv_cache_dtype=kv_cache_dtype,
**extra_kwargs,
) as vllm_model:
chunked_prefill_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
check_logprobs_close(
outputs_0_lst=no_chunked_prefill_outputs,
outputs_1_lst=chunked_prefill_outputs,
name_0="no_chunked_prefill",
name_1="chunked_prefill",
)