175 lines
5.7 KiB
Python
175 lines
5.7 KiB
Python
from typing import Optional, Tuple
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from vllm._C import ops
|
|
|
|
IS_NEOX_STYLE = [True, False]
|
|
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
|
HEAD_SIZES = [64, 80, 96, 112, 128, 256]
|
|
ROTARY_DIMS = [None, 32] # None means rotary dim == head size
|
|
NUM_HEADS = [7, 12, 40, 52] # Arbitrary values for testing
|
|
NUM_TOKENS = [11, 83, 2048] # Arbitrary values for testing
|
|
SEEDS = [0]
|
|
|
|
|
|
def rotate_neox(x: torch.Tensor) -> torch.Tensor:
|
|
x1 = x[..., :x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2:]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
def rotate_gptj(x: torch.Tensor) -> torch.Tensor:
|
|
x1 = x[..., ::2]
|
|
x2 = x[..., 1::2]
|
|
x = torch.stack((-x2, x1), dim=-1)
|
|
return x.flatten(-2)
|
|
|
|
|
|
def apply_rope(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
is_neox_style: bool,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
rotate_fn = rotate_neox if is_neox_style else rotate_gptj
|
|
q_embed = (q * cos) + (rotate_fn(q) * sin)
|
|
k_embed = (k * cos) + (rotate_fn(k) * sin)
|
|
return q_embed, k_embed
|
|
|
|
|
|
class RefRotaryEmbedding(nn.Module):
|
|
"""Reference implementation of rotary embedding."""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
is_neox_style: bool,
|
|
max_position_embeddings: int = 8192,
|
|
base: int = 10000,
|
|
) -> None:
|
|
super().__init__()
|
|
self.rotary_dim = dim
|
|
self.is_neox_style = is_neox_style
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
# Create cos and sin embeddings.
|
|
inv_freq = 1.0 / (base**(torch.arange(0, dim, 2) / dim))
|
|
t = torch.arange(max_position_embeddings).float()
|
|
freqs = torch.einsum("i,j->ij", t, inv_freq.float())
|
|
if is_neox_style:
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
else:
|
|
emb = torch.repeat_interleave(freqs, 2, -1)
|
|
cos = emb.cos().to(dtype=inv_freq.dtype)
|
|
sin = emb.sin().to(dtype=inv_freq.dtype)
|
|
self.register_buffer("cos_cached", cos, persistent=False)
|
|
self.register_buffer("sin_cached", sin, persistent=False)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor, # [num_tokens]
|
|
query: torch.Tensor, # [num_tokens, num_heads, head_size]
|
|
key: torch.Tensor, # [num_tokens, num_heads, head_size]
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
query_rot = query[..., :self.rotary_dim]
|
|
query_pass = query[..., self.rotary_dim:]
|
|
key_rot = key[..., :self.rotary_dim]
|
|
key_pass = key[..., self.rotary_dim:]
|
|
|
|
query_rot = query_rot.transpose(0, 1)
|
|
key_rot = key_rot.transpose(0, 1)
|
|
cos = F.embedding(positions, self.cos_cached)
|
|
sin = F.embedding(positions, self.sin_cached)
|
|
|
|
query_rot, key_rot = apply_rope(query_rot, key_rot, cos, sin,
|
|
self.is_neox_style)
|
|
query_rot = query_rot.transpose(0, 1).contiguous()
|
|
key_rot = key_rot.transpose(0, 1).contiguous()
|
|
|
|
query = torch.cat((query_rot, query_pass), dim=-1)
|
|
key = torch.cat((key_rot, key_pass), dim=-1)
|
|
|
|
# Output query/key shape: [num_tokens, num_tokens, head_size]
|
|
return query, key
|
|
|
|
|
|
@pytest.mark.parametrize("is_neox_style", IS_NEOX_STYLE)
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
@pytest.mark.parametrize("num_heads", NUM_HEADS)
|
|
@pytest.mark.parametrize("head_size", HEAD_SIZES)
|
|
@pytest.mark.parametrize("rotary_dim", ROTARY_DIMS)
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@torch.inference_mode()
|
|
def test_rotary_embedding(
|
|
is_neox_style: bool,
|
|
num_tokens: int,
|
|
num_heads: int,
|
|
head_size: int,
|
|
rotary_dim: Optional[int],
|
|
dtype: torch.dtype,
|
|
seed: int,
|
|
max_position: int = 8192,
|
|
base: int = 10000,
|
|
) -> None:
|
|
if rotary_dim is None:
|
|
rotary_dim = head_size
|
|
torch.random.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
positions = torch.randint(0, max_position, (num_tokens, ), device="cuda")
|
|
query = torch.randn(num_tokens,
|
|
num_heads * head_size,
|
|
dtype=dtype,
|
|
device="cuda")
|
|
key = torch.randn(num_tokens,
|
|
num_heads * head_size,
|
|
dtype=dtype,
|
|
device="cuda")
|
|
|
|
# Create the rotary embedding.
|
|
inv_freq = 1.0 / (base**(
|
|
torch.arange(0, rotary_dim, 2, dtype=torch.float) / rotary_dim))
|
|
t = torch.arange(max_position).float()
|
|
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
cos = freqs.cos()
|
|
sin = freqs.sin()
|
|
cos_sin_cache = torch.cat((cos, sin), dim=-1)
|
|
cos_sin_cache = cos_sin_cache.to(dtype=dtype, device="cuda")
|
|
|
|
# Run the kernel. The kernel is in-place, so we need to clone the inputs.
|
|
out_query = query.clone()
|
|
out_key = key.clone()
|
|
ops.rotary_embedding(
|
|
positions,
|
|
out_query,
|
|
out_key,
|
|
head_size,
|
|
cos_sin_cache,
|
|
is_neox_style,
|
|
)
|
|
|
|
# Run the reference implementation.
|
|
ref_rotary_embedding = RefRotaryEmbedding(
|
|
dim=rotary_dim,
|
|
is_neox_style=is_neox_style,
|
|
max_position_embeddings=max_position,
|
|
base=base,
|
|
).to(dtype=dtype, device="cuda")
|
|
ref_query, ref_key = ref_rotary_embedding(
|
|
positions,
|
|
query.view(num_tokens, num_heads, head_size),
|
|
key.view(num_tokens, num_heads, head_size),
|
|
)
|
|
ref_query = ref_query.view(num_tokens, num_heads * head_size)
|
|
ref_key = ref_key.view(num_tokens, num_heads * head_size)
|
|
|
|
# Compare the results.
|
|
assert torch.allclose(out_query, ref_query, atol=1e-5, rtol=1e-5)
|
|
assert torch.allclose(out_key, ref_key, atol=1e-5, rtol=1e-5)
|